DOI QR코드

DOI QR Code

Modal Characteristics of Photonic Crystal Fibers

  • Lee, Yong-Jae (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Song, Dae-Sung (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Kim, Se-Heon (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Huh, Jun (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Lee, Yong-Hee (Department of Physics, Korea Advanced Institute of Science and Technology)
  • Received : 2003.03.06
  • Published : 2003.09.01

Abstract

The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.

Keywords

References

  1. O. J. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819-1821, 1999. https://doi.org/10.1126/science.284.5421.1819
  2. H. Y. Ryu, S. H. Kim, S. H. Kwon, H. G. Park and Y. H. Lee, “Low threshold photonic crystal lasers from InGaAsP free-standing slab structures,” J. Opt. Soc. Korea, vol. 6, pp. 57-63, 2002. https://doi.org/10.3807/JOSK.2002.6.3.059
  3. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-Silica single-mode optical fiber with photonic crystal cladding”,Opt. Lett., vol. 21, pp. 1547- 1549, 1996. https://doi.org/10.1364/OL.21.001547
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, pp. 1347-1348, 1998. https://doi.org/10.1049/el:19980965
  5. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photoniccrystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 80, pp. 3901-3903, 2002. https://doi.org/10.1063/1.1481984
  6. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. ,vol. 24, pp. 276-278, 1999. https://doi.org/10.1364/OL.24.000276
  7. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” IEEE J. of Lightwave Technol., vol. 17, pp. 1093-1102, 1999. https://doi.org/10.1109/50.769313
  8. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fibers,” IEEE J. Lightwave Technol. vol. 18, pp. 50-56, 2000. https://doi.org/10.1109/50.818906
  9. K. Saitoh, M. Koshiba, “Full-vectorial imaginarydistance beam propagation method based on a finite element scheme, application to photonic crystal fibers,” IEEE J. of Quantum Elecron., vol. 38, pp. 927-933, 2002. https://doi.org/10.1109/JQE.2002.1017609
  10. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals, (Princeton university press, Princeton, N. J., USA, 1995).
  11. S. G. Jonson, and J. D. Joannopoulos, “Blockiterative frequency-domain methods for Maxwell's equations in a plane wave basis,” Opt. Express., vol. 8, pp. 173-190, 2000. https://doi.org/10.1364/OE.8.000173
  12. J. Broeng, S. Barkou, S. Thomas, B. Anders, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett., vol. 25, pp. 96-98, 2000. https://doi.org/10.1364/OL.25.000096
  13. P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, (Academic, London, UK, 1981)
  14. The periodic boundary conditions and Berenger PML(perfectly matched layer) boundary condition are used for the propagating direction(z) and the transversal plane(x-y), respectively. And to increase the computational accuracy, the number of grids per lattice constant is set to 30 and the maximum time step is taken as $2^{16}$.
  15. G. Ghosh, H. Yajima, “Pressure-dependent sellmeier coefficients and material dispersions for silica fiber glass,” IEEE J. of Lightwave Technol., vol. 16, pp. 2002-2005, 1998. https://doi.org/10.1109/50.730361
  16. F. Brechet, J. Marcou, D. Pagnoux, and P. Ray, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Optical Fiber Technology, vol. 6, pp. 181-191, 2000. https://doi.org/10.1006/ofte.1999.0320
  17. A. Ferrando, E. Silvestre, J.J. Miret, P. Andres, “Nearly zero ultra-flatterned dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790-792, 2000. https://doi.org/10.1364/OL.25.000790
  18. J. Kim, U. C. Paek, D. Y. Kim, Y. Chung, in Optical Fiber Communication Conference '01, Optical Society of America, Anaheim, USA, pp. WDD-86, 2001. https://doi.org/10.1109/OFC.2001.928538
  19. Optical Fiber Communication Conference '01 Optical Society of America J.Kim;U.C.Paek;D.Y.Kim;Y.Chung
  20. A. Ferrando, E. Silvestre, J.J. Miret, P. Andres., 'Vector description of higher order modes in photonic crystal fibers,' J. Opt. Soc. Am. A, vol. 17, pp. 1333 1339, 2000 https://doi.org/10.1364/JOSAA.17.001333