DOI QR코드

DOI QR Code

Theoretical Approach for the Structures, Energetics and Spectroscopic Properties of (H2O3)n (n = 1-5) Clusters

  • Seo, Hyun-Il (Department of Chemistry, HanNam University) ;
  • Bahng, Jin-Ah (Department of Chemistry, HanNam University) ;
  • Kim, Yeon-Cheol (Department of Politics, Communication & International Studies, HanNam University) ;
  • Kim, Seung-Joon (Department of Chemistry, HanNam University)
  • Received : 2012.05.07
  • Accepted : 2012.06.25
  • Published : 2012.09.20

Abstract

The geometrical parameters, vibrational frequencies, and binding energies for $(H_2O_3)_n$ (n = 1-5) have been investigated using various quantum mechanical techniques. The possible structures of the clusters (n = 2-5) are fully optimized and the binding energies are predicted using energy differences at each optimized geometry. The harmonic vibrational frequencies are also determined and zero-point vibrational energies (ZPVEs) are considered for the better prediction of the binding energy. The best estimation of the binding energy for the dimer is 8.65 kcal/mol. For n = 2 and 3, linear structures with all trans forms of the HOOOH monomers are predicted to be the lowest conformations in energy, while the cyclic structures with all cis-HOOOH monomers are preferable structures for n = 4 and 5.

Keywords

References

  1. Zheng, W.; Jewitt, D.; Kaiser, R. I. Phys. Chem. Chem. Phys. 2007, 9, 2556. https://doi.org/10.1039/b700814g
  2. Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15308. https://doi.org/10.1073/pnas.202596799
  3. Maetzke, A.; Jensen, S. J. K. Chem. Phys. Lett. 2006, 425, 40. https://doi.org/10.1016/j.cplett.2006.04.097
  4. Wentworth, P., Jr.; Wentworth, A. D.; Zhu, X. Y.; Wilson, I. A.; Janda, K. D.; Eschenmoser, A.; Lerner, R. A. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 1490. https://doi.org/10.1073/pnas.0437831100
  5. Shukla, P. K.; Mishra, P. C. J. Phys. Chem. B 2007, 111, 4603. https://doi.org/10.1021/jp070399e
  6. Plesnièar, B. Acta Chim. Slov. 2005, 52, 1.
  7. Berthelot, M. Compt. Rend. 1880, 90, 656.
  8. Rothmund, V.; Burgstaller, A. Monatsh. Chem. 1917, 38, 295. https://doi.org/10.1007/BF01524280
  9. Bray, W. C. J. Am. Chem. Soc. 1938, 60, 82. https://doi.org/10.1021/ja01268a027
  10. Taube, H.; Bray, W. C. J. Am. Chem. Soc. 1940, 62, 3357. https://doi.org/10.1021/ja01869a027
  11. Bielski, B. H. J.; Schwarz, H. A. J. Phys. Chem. 1968, 72, 3836- 3841. https://doi.org/10.1021/j100857a024
  12. Gigueere, P. A.; Herman, K. Can. J. Chem. 1970, 48, 3473- 3482. https://doi.org/10.1139/v70-581
  13. Deglise, X.; Giguèere, P. A. Can. J. Chem. 1971, 49, 2242-2247. https://doi.org/10.1139/v71-364
  14. Arnau, J. L.; Gigueere, P. A. J. Chem. Phys. 1974, 60, 270-273. https://doi.org/10.1063/1.1680779
  15. Engdahl, A.; Nelander, B. Science 2002, 295, 482. https://doi.org/10.1126/science.1067235
  16. Plesniear, B.; Tuttle, T.; Cerkovnik, J.; Cremer, D. J. Am. Chem. Soc. 2003, 125, 11553. https://doi.org/10.1021/ja036801u
  17. Tuttle, T.; Cerkovnik, J.; Plesnièar, B.; Cremer, D. J. Am. Chem. Soc. 2004, 126, 16093. https://doi.org/10.1021/ja0450511
  18. Nyffeler, P. T.; Boyle, N. A.; Eltepu, L.; Wong, C.-H.; Eschenmoser, A.; Lerner, R. A.; Wentworth, P., Jr. Angew. Chem., Int. Ed. 2004, 43, 4656. https://doi.org/10.1002/anie.200460457
  19. Suma, K.; Sumiyoshi, Y.; Endo, Y. J. Am. Chem. Soc. 2005, 127, 14998. https://doi.org/10.1021/ja0556530
  20. Plesnicar, B.; Kaiser, S.; Azman, A. J. Am. Chem. Soc. 1973, 95, 5476. https://doi.org/10.1021/ja00798a007
  21. Cremer, D. J. Chem. Phys. 1978, 69, 4456. https://doi.org/10.1063/1.436435
  22. Jackels, C. F.; Phillips, D. H. J. Chem. Phys. 1986, 84, 5013. https://doi.org/10.1063/1.450650
  23. Gonzalez, C.; Theisen, J.; Zhu, L.; Schlegel, H. B.; Hase, W. L.; Kaiser, E. W. J. Phys. Chem. 1991, 95, 6784.
  24. Jackels, C. F. J. Chem. Phys. 1993, 99, 5768. https://doi.org/10.1063/1.465928
  25. Koller, J.; Plesnièar, B. J. Am. Chem. Soc. 1996, 118, 2470. https://doi.org/10.1021/ja9503387
  26. Wu, A.; Cremer, D.; Gauss, J. J. Phys. Chem. A 2003, 107, 8737. https://doi.org/10.1021/jp030697l
  27. Cerkovnik, J.; Tuttle, T.; Kraka, E.; Lendero, N.; Plesni ar, B.; Cremer, D. J. Am. Chem. Soc. 2006, 128, 4090. https://doi.org/10.1021/ja058065v
  28. Kovacic, S.; Koller, J.; Cerkovnik, J.; Tuttle, T.; Plesnicar, B. J. Phys. Chem. A 2008, 112, 8129. https://doi.org/10.1021/jp8036928
  29. Denis, P. A.; Ornella, F. R. J. Phys. Chem. A 2009, 113, 499. https://doi.org/10.1021/jp808795e
  30. Tuttle, T.; Cerkovnik, J.; Koller, J.; Plesni ar, B. J. Phys. Chem. A 2010, 114, 8003. https://doi.org/10.1021/jp103882e
  31. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  32. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  33. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  34. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
  35. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
  36. Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125, 234109. https://doi.org/10.1063/1.2409292
  37. Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615. https://doi.org/10.1039/b810189b
  38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
  39. Boys, S. F.; Bernardi, F.; Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  40. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

Cited by

  1. Recent Advances in the Chemistry of Hydrogen Trioxide (HOOOH) vol.113, pp.10, 2013, https://doi.org/10.1021/cr300512s
  2. (n=1-4, m=1-4) Dimers vol.59, pp.2, 2015, https://doi.org/10.5012/jkcs.2015.59.2.117
  3. = 1-4) clusters vol.116, pp.19, 2016, https://doi.org/10.1002/qua.25204
  4. Structure of hydrogen tetroxide in gas phase and in aqueous environments: relationship to the hydroperoxyl radical self-reaction vol.27, pp.1, 2016, https://doi.org/10.1007/s11224-015-0717-2