• Title/Summary/Keyword: zero properties

Search Result 808, Processing Time 0.031 seconds

Superconductivity of YBa2Cu3-yAgyO7-x Manufactured by Pyrophoric Synthetic Method (발화합성법으로 제조한 YBa2Cu3-yAgyO7-x의 초전도 특성)

  • Kim, Young-Soon;Yang, Suk-Woo;Park, Jeong-Shik;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.639-644
    • /
    • 1996
  • The $YBa_2Cu_{3-y}Ag_yO_{7-x}$ high-temperature superconductors were prepared by pyrophoric synthetic method from $Y_2O_3$, $BaCO_3$, CuO, and $AgNO_3$ powders. When we were partially substituted Ag for Cu in $YBa_3Cu_3O_{7-x}$, the superconducting properties of $YBa_2Cu_{3-y}Ag_yO_{7-x}$ were investigated with X-ray diffractometer, resisitivity measuring equipment, SEM, and Vickers Hardness. The Tc,zero of $YBa_2Cu_3O_{7-x}$ was 91K, the density was $5.2g/cm^3$, and the hardness was $590kg/mm^2$. When Ag was substituted below y=0.15, electrical property of $YBa_2Cu_{3-y}Ag_yO_{7-x}$ did not change but microstructure, density, and hardness were enhanced.

  • PDF

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Theoretical Study for Structures and Spectroscopic Properties of C60(CH2)nOH (n=0~2) and C60(OH)2 (C60(CH2)nOH (n=0~2)와 C60(OH)2의 분자구조 및 분광학적 성질에 관한 이론 연구)

  • Lee, Ju-Young;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.905-911
    • /
    • 2011
  • The possible minimum structures of $C_{60}(CH_2)_nOH$ (n=0~2) and $C_{60}(OH)_2$have been optimized using density functional theory (DFT) with the 6-311G (d,f) basis set. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies (ZPVE) have been considered to predict the binding energies. The predicted binding energy of $C_{60}CH_2OH$ is about 10 kcal/mol more stable than the binding energy of $C_{60}OH$.

A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient (압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발)

  • Baek, Seong-Gu;Im, Hyo-Jae;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

Development of GPS data recovery circuit using CPSO (CPSO를 이용한 GPS위성 데이터 추출회로 개발)

  • 변건식;정명덕;박지언;최희주;김성곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.3
    • /
    • pp.317-323
    • /
    • 1998
  • A synchronization is important element not only wire communication but also wireless communication. Especially, In SS(Spread Spectrum) communication method used GPS(Global Positioning System) synchronization is more important. A synchronous oscillator(SO) is a network which synchronizes, tracks, filter, amplifies and divides (if necessary) in a single process. Without an input signal, the SO is a free-running oscillator, oscillating at a frequency $w_0$, but phase changes $180^{\circ}$ within tracking range of SO. Therefore CPSO was used for this problem. The coherent phase synchronous oscillator(CPSO) is created by adding two external loops to the SO and has a wider tracking bandwidth and a zero-offset phase response (coherent) while maintaining the SO properties of high signal-to-rejection and fast frequency acquisition times. Therefore phase between input signal and output signal is synchronized. In this paper, GPS data recovery circuit has applied CPSO using front reference characters and has certified an excellent data recovery capability.

  • PDF

Electrical Properties of Chip Typed Shunt Resistor Composed of Carbon Nanotube and Metal Alloy for the Use of DC Current Measurement (DC 전류 측정을 위한 탄소나노튜브와 합금으로 구성된 칩 타입 션트저항체의 전기적 특성)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • We fabricated plate typed shunt resistors composed of carbon nanotube (CNT) and metal alloy for measuring DC current. CNT plates were prepared from dispersed CNT/Urethane solution by squeezing method. Cu/Ni alloys were prepared from composition-designed alloy wires for adjusting the temperature coefficient of resistance (TCR) by pressing them. As well, we fabricated a hybrid resistor by squeezing the CNT/Urethane solution on the metal alloy plate directly. In order to confirm the composition ratio of the Cu/Ni alloy, we used an energy-dispersed X-ray spectroscopy (EDX). Cross-section and surface morphology were analyzed by using a scanning electron microscopy (SEM). Finally, we measured the initial resistance of 2.35 Ω at 25℃ for the CNT paper resistor, 7.56 mΩ for the alloy resistor, and 7.38 mΩ for the hybrid resistor. The TCR was also measured to be -778.72 ppm/℃ at the temperature range between 25℃ to 125℃ for the CNT paper resistor, 824.06 ppm/℃ for the alloy resistor, and 17.61 ppm/℃ for the hybrid resistor. Some of the hybrid resistors showed a near-zero TCR of 1.38, -2.77, 2.66, and 5.49 ppm/℃, which might be the world best-value ever reported. Consequently, we could expect an error-free measurement of the DC current using this resistor.

ON THE SCALED INVERSE OF (xi - xj) MODULO CYCLOTOMIC POLYNOMIAL OF THE FORM Φps (x) OR Φpsqt (x)

  • Cheon, Jung Hee;Kim, Dongwoo;Kim, Duhyeong;Lee, Keewoo
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.621-634
    • /
    • 2022
  • The scaled inverse of a nonzero element a(x) ∈ ℤ[x]/f(x), where f(x) is an irreducible polynomial over ℤ, is the element b(x) ∈ ℤ[x]/f(x) such that a(x)b(x) = c (mod f(x)) for the smallest possible positive integer scale c. In this paper, we investigate the scaled inverse of (xi - xj) modulo cyclotomic polynomial of the form Φps (x) or Φpsqt (x), where p, q are primes with p < q and s, t are positive integers. Our main results are that the coefficient size of the scaled inverse of (xi - xj) is bounded by p - 1 with the scale p modulo Φps (x), and is bounded by q - 1 with the scale not greater than q modulo Φpsqt (x). Previously, the analogous result on cyclotomic polynomials of the form Φ2n (x) gave rise to many lattice-based cryptosystems, especially, zero-knowledge proofs. Our result provides more flexible choice of cyclotomic polynomials in such cryptosystems. Along the way of proving the theorems, we also prove several properties of {xk}k∈ℤ in ℤ[x]/Φpq(x) which might be of independent interest.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Design of Variable Arithmetic Operation Systems for Computing Multiplications and Mulitplicative Inverses in $GF(2^m)$) ($GF(2^m)$ 상의 승법과 승법력 계산을 위한 가변형 산술 연산 시스템의 설계)

  • 박동영;강성수;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.528-535
    • /
    • 1988
  • This paper presents a constructing theory of variable arithmetic operation systems for computing multiplications and multiplicative inverse in GF(2**m) based on a modulo operation of degree on elements in Galois fields. The proposed multiplier is composed of a zero element control part, input element conversion part, inversion circuit, and output element conversion part. These systems can reduce reasonable circuit areas due to the common use of input/output element converison parts, and the PLA and module structure provice a variable property capable of convertible uses as arithmetic operation systems over different finite fields. This type of designs gives simple, regular, expandable, and concurrent properties suitable for VLSI implementation. Expecially, the multiplicative inverse circuit proposed here is expected to offer a characteristics of the high operation speed than conventional method.

  • PDF

PROJECTIONS OF PSEUDOSPHERE IN THE LORENTZ 3-SPACE

  • Birman, Graciela S.;Desideri, Graciela M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.483-492
    • /
    • 2007
  • In this paper, we study the map projections from pseudo-sphere $S_1^2$ onto the non-lightlike surfaces in the 3-dimensional Lorentzian space, $L^3$, with curvature zero. We show geometrical means and properties of $\mathbb{R}{\times}S_1^1-cylindrical$, $S^1{\times}L-cylindrical$ and $\mathbb{R}{\times}H_0^1-cylindrical$ projections defined on $S_1^2$ to cylinders $\mathbb{R}{\times}S_1^1,\;S^1{\times}L$ and $\mathbb{R}{\times}H_0^1$, respectively, and orthographic and stereographic projections on $S_1^2$ to Lorentzian plane, $L^2$.