• Title/Summary/Keyword: zero divisor ring

Search Result 52, Processing Time 0.028 seconds

ON DOMINATION IN ZERO-DIVISOR GRAPHS OF RINGS WITH INVOLUTION

  • Nazim, Mohd;Nisar, Junaid;Rehman, Nadeem ur
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1409-1418
    • /
    • 2021
  • In this paper, we study domination in the zero-divisor graph of a *-ring. We first determine the domination number, the total domination number, and the connected domination number for the zero-divisor graph of the product of two *-rings with componentwise involution. Then, we study domination in the zero-divisor graph of a Rickart *-ring and relate it with the clique of the zero-divisor graph of a Rickart *-ring.

A NOTE ON ZERO DIVISORS IN w-NOETHERIAN-LIKE RINGS

  • Kim, Hwankoo;Kwon, Tae In;Rhee, Min Surp
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • We introduce the concept of w-zero-divisor (w-ZD) rings and study its related rings. In particular it is shown that an integral domain R is an SM domain if and only if R is a w-locally Noetherian w-ZD ring and that a commutative ring R is w-Noetherian if and only if the polynomial ring in one indeterminate R[X] is a w-ZD ring. Finally we characterize universally zero divisor rings in terms of w-ZD modules.

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad;Ghanem, Manal
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1403-1418
    • /
    • 2019
  • Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.

ON SIGNLESS LAPLACIAN SPECTRUM OF THE ZERO DIVISOR GRAPHS OF THE RING ℤn

  • Pirzada, S.;Rather, Bilal A.;Shaban, Rezwan Ul;Merajuddin, Merajuddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • For a finite commutative ring R with identity 1 ≠ 0, the zero divisor graph ��(R) is a simple connected graph having vertex set as the set of nonzero zero divisors of R, where two vertices x and y are adjacent if and only if xy = 0. We find the signless Laplacian spectrum of the zero divisor graphs ��(ℤn) for various values of n. Also, we find signless Laplacian spectrum of ��(ℤn) for n = pz, z ≥ 2, in terms of signless Laplacian spectrum of its components and zeros of the characteristic polynomial of an auxiliary matrix. Further, we characterise n for which zero divisor graph ��(ℤn) are signless Laplacian integral.

ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER SERIES RINGS

  • MOUSSAVI, AHMAD;PAYKAN, KAMAL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.363-377
    • /
    • 2015
  • Let R be a ring, (S,${\leq}$) a strictly ordered monoid and ${\omega}$ : S ${\rightarrow}$ End(R) a monoid homomorphism. The skew generalized power series ring R[[S,${\omega}$]] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal'cev-Neumann Laurent series rings. In this paper, we investigate the interplay between the ring-theoretical properties of R[[S,${\omega}$]] and the graph-theoretical properties of its zero-divisor graph ${\Gamma}$(R[[S,${\omega}$]]). Furthermore, we examine the preservation of diameter and girth of the zero-divisor graph under extension to skew generalized power series rings.

ON STRONG METRIC DIMENSION OF ZERO-DIVISOR GRAPHS OF RINGS

  • Bhat, M. Imran;Pirzada, Shariefuddin
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.563-580
    • /
    • 2019
  • In this paper, we study the strong metric dimension of zero-divisor graph ${\Gamma}(R)$ associated to a ring R. This is done by transforming the problem into a more well-known problem of finding the vertex cover number ${\alpha}(G)$ of a strong resolving graph $G_{sr}$. We find the strong metric dimension of zero-divisor graphs of the ring ${\mathbb{Z}}_n$ of integers modulo n and the ring of Gaussian integers ${\mathbb{Z}}_n$[i] modulo n. We obtain the bounds for strong metric dimension of zero-divisor graphs and we also discuss the strong metric dimension of the Cartesian product of graphs.

RINGS WHOSE ASSOCIATED EXTENDED ZERO-DIVISOR GRAPHS ARE COMPLEMENTED

  • Driss Bennis;Brahim El Alaoui;Raja L'hamri
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.763-777
    • /
    • 2024
  • Let R be a commutative ring with identity 1≠ 0. In this paper, we continue the study started in [10] to further investigate when the extended zero-divisor graph of R, denoted as $\bar{\Gamma}$(R), is complemented. We also study when $\bar{\Gamma}$(R) is uniquely complemented. We give a complete characterization of when $\bar{\Gamma}$(R) of a finite ring R is complemented. Various examples are given using the direct product of rings and idealizations of modules.

An Ideal-based Extended Zero-divisor Graph on Rings

  • Ashraf, Mohammad;Kumar, Mohit
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.595-613
    • /
    • 2022
  • Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph 𝚪'I (R) and prove that 𝚪'I (R) is connected with diameter at most two and if 𝚪'I (R) contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph 𝚪'I (R) and the ideal-based zero-divisor graph 𝚪I (R) associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor graph 𝚪'I (R) is identical to the ideal-based zero-divisor graph 𝚪I (R) if and only if R has exactly two minimal prime-ideals which contain I.

ZERO-DIVISOR GRAPHS OF MULTIPLICATION MODULES

  • Lee, Sang Cheol;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.571-584
    • /
    • 2012
  • In this study, we investigate the concept of zero-divisor graphs of multiplication modules over commutative rings as a natural generalization of zero-divisor graphs of commutative rings. In particular, we study the zero-divisor graphs of the module $\mathbb{Z}_n$ over the ring $\mathbb{Z}$ of integers, where $n$ is a positive integer greater than 1.