An Ideal-based Extended Zero-divisor Graph on Rings】

Mohammad Ashraf
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
e-mail : mashraf80@hotmail.com
Mohit Kumar*
Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University Mathura-281 406, Uttar Pradesh, India
e-mail : mohitkumaramu123@gmail.com

Abstract. Let R be a commutative ring with identity and let I be a proper ideal of R. In this paper, we study the ideal based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ and prove that $\Gamma_{I}^{\prime}(R)$ is connected with diameter at most two and if $\Gamma_{I}^{\prime}(R)$ contains a cycle, then girth is at most four girth at most four. Furthermore, we study affinity the connection between the ideal based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ and the ideal-based zero-divisor graph $\Gamma_{I}(R)$ associated with the ideal I of R. Among the other things, for a radical ideal of a ring R, we show that the ideal-based extended zero-divisor $\operatorname{graph} \Gamma_{I}^{\prime}(R)$ is identical to the ideal-based zero-divisor graph $\Gamma_{I}(R)$ if and only if R has exactly two minimal prime-ideals which contain I.

1. Introduction

Throughout this paper let R be a commutative ring identity, I be a proper ideal of R which is not a prime ideal of $R, Z(R)$ be the set of zero-divisors of $R, Z^{*}(R)=Z(R) \backslash\{0\}$, $Z_{I}^{*}(R)=\{u \notin I \mid u v \in I$ for some $v \notin I\}, Z_{I}(R)=Z_{I}^{*}(R) \cup I$ and $N(R)$ be the set of nilpotent elements of R. Let B be a submodule of an R-module M and X be any subset of M. Then $(B: X)=\{r \in R \mid r x \in B$ for all $x \in X\}$. $\operatorname{Min}_{I}(R)$ will denote the set of minimal prime ideals of R which contain I. Let $\beta(I)=\left\{r \in R \mid r^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$ be a prime radical of I in R, then $\beta^{*}(I)=\beta(I) \backslash I$ and I is said to be radical ideal if $\beta(I)=I$. R / I denotes the quotient ring of R, and for any $x+I \in R / I$ we use the notation $[x]$. For any subset A of R, we have $A^{*}=A \backslash\{0\}$.

Let $G=(V(G), E(G))$ be a graph, where $V(G)$ denotes the set of vertices and $E(G)$ be the set of edges of G. We say that G is connected if there exists a path between any two

[^0]distinct vertices of G. For vertices a and b of $G, d(a, b)$ denotes the length of the shortest path from a to b. In particular, $d(a, a)=0$ and $d(a, b)=\infty$ if there exists no such path. The diameter of G, denoted by $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V(G)\}$. A cycle in a graph G is a path that begins and ends at the same vertex. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G, \quad(\operatorname{gr}(G)=\infty$ if G contains no cycle). A complete graph G is a graph where all distinct vertices are adjacent. The complete graph with $|V(G)|=n$ is denoted by K_{n}. A graph G is said to be complete k-partite if there exists a partition $\bigcup_{i=1}^{k} V_{i}=V(G)$, such that $u-v \in E(G)$ if and only if u and v are in different part of partition. If $\left|V_{i}\right|=n_{i}$, then G is denoted by $K_{n_{1}, n_{2}, \cdots, n_{k}}$ and in particular G is called complete bipartite if $k=2 . K_{1, n}$ is said to be a star graph. \bar{G} denotes the complement graph of G. A graph $H=(V(H), E(H))$ is said to be a subgraph of G, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Moreover, H is said to be induced subgraph of G if $V(H) \subseteq V(G)$ and $E(H)=\{u-v \in E(G) \mid u, v \in V(H)\}$ and is denoted by $G[V(H)]$. Let H_{1} and H_{2} be two disjoint graphs. The join of H_{1} and H_{2}, denoted by $H_{1} \vee H_{2}$, is a graph with vertex set $V\left(H_{1} \vee H_{2}\right)=V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1} \vee H_{2}\right)=E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup\left\{u-v \mid u \in V\left(H_{1}\right), v \in V\left(H_{2}\right)\right\}$. Also G is called a null graph if $E(G)=\phi$. For a graph G, a complete subgraph of G is called a clique. The clique number, $\omega(G)$, is the greatest integer $n \geqslant 1$ such that $K_{n} \subseteq G$, and $\omega(G)=\infty$ if $K_{n} \subseteq G$ for all $n \geqslant 1$. The chromatic number $\chi(G)$ of a graph G is the minimum number of colours needed to colour all the vertices of G such that every two adjacent vertices get different colours. A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G. For a connected $\operatorname{graph} G, \delta(G)=\min \{\operatorname{deg}(x) \mid x \in V(G)\}, V(\delta(G))=\{x \mid x \in V(G), \operatorname{deg}(x)=\delta(G)\}$ and $\Delta(G)=\max \{\operatorname{deg}(x) \mid x \in V(G)\}, V(\Delta(G))=\{x \mid x \in V(G), \operatorname{deg}(x)=\Delta(G)\}$. A subset $D \subseteq V(G)$ is said to be a dominating set if every vertex in $V(G) \backslash D$ is adjacent to a vertex in D. A dominating set D is called a weak (or strong) dominating set if for every $u \in V(G) \backslash D$ there exists $v \in D$ with $\operatorname{deg}(v) \leq \operatorname{deg}(u)$ (or $\operatorname{deg}(u) \leq \operatorname{deg}(v)$) and u is adjacent to v. The domination number $\gamma(G)$ of G is defined to be minimum cardinality of a dominating set of G and such a dominating set of G is called a γ-set of G. In a similar way, we define the weak (or strong) domination number $\gamma_{w}(G)$ (or $\gamma_{s}(G)$) of G. A graph G is said to be excellent, if for every $u \in V(G)$, there exists a γ-set D containing u. Graph-theoretic terms are presented as they appear in Diestel 9 .
The study of algebraic structure associated with graph is an active and interesting area of research. Several authors have done a lot of work in this area for instance, see [1]4] 7/8, 12]. The idea of a zero-divisor graph of a commutative ring R with identity was introduced by I. Beck in [8], who defined the graph on the vertex set R in which distinct vertices $u, v \in R$ are adjacent if and only if $u v=0$. He was mainly interested in coloring of rings. The first simplification of Beck's zero divisor graph was introduced by Anderson and Livingston in [2]. We recall from [2] that a zero-divisor graph $\Gamma(R)$ of R is the (undirected) graph with set of vertices $Z^{*}(R)$ and on the vertex set $Z^{*}(R)$, in which any two distinct vertices u and v of $\Gamma(R)$ are adjacent if and only if $u v=0$. In [13] Redmond introduced an ideal-based zero-divisor graph $\Gamma_{I}(R)$ with set of vertices $Z_{I}^{*}(R)$ and vertex set $Z_{I}^{*}(R)$, in which any two distinct vertices u and v of $\Gamma_{I}(R)$ are adjacent if and only if $u v \in I$. In [5] Bakhtyiari et al. introduced the extended zero-divisor graph $\Gamma^{\prime}(R)$. The extended zero-divisor graph of R is an (undirected) graph $\Gamma^{\prime}(R)$ with the vertex set $Z^{*}(R)$ and two distinct vertices u and v of $\Gamma^{\prime}(R)$ are adjacent if and only if either $R u \cap a n n_{R}(v) \neq\{0\}$ or $R v \cap a n n_{R}(u) \neq\{0\}$.

In this paper we generalize the extended zero divisor graph $\Gamma^{\prime}(R)$ to an ideal-based
extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$. The ideal based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ is the (undirected) graph with the vertex set $Z_{I}^{*}(R)$, in which two distinct vertices u and v are adjacent if and only if either $(R u+I) \cap(I:\{v\}) \neq I$ or $(R v+I) \cap(I:\{u\}) \neq I$. If we take $I=(0)$, then $\Gamma_{I}^{\prime}(R)=\Gamma^{\prime}(R)$. It follows that the ideal-based zero-divisor graph $\Gamma_{I}(R)$ is a subgraph of $\Gamma_{I}^{\prime}(R)$. We prove that $\Gamma_{I}^{\prime}(R)$ is connected with diameter at most two, and if $\Gamma_{I}^{\prime}(R)$ contain a cycle, then girth is at most four. Furthermore, we study the connection between the ideal based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ and the ideal-based zero-divisor graph $\Gamma_{I}(R)$ associated with the ideal I of a commutative ring R. Among the other things, for a radical ideal of a commutative ring R, we show that ideal-based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ is identical to the ideal-based zero-divisor graph $\Gamma_{I}(R)$ if and only if R has exactly two minimal prime-ideals which contain I.

2. Fundamental Properties of Ideal-based Extended Zero-divisor Graph

In this section, we generalize the notion of an extended zero-divisor graph $\Gamma^{\prime}(R)$ to an ideal-based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ and study fundamental properties of $\Gamma_{I}^{\prime}(R)$.

Definition 2.1. Let I be an ideal in a commutative ring R with unity. An ideal-based extended zero divisor graph $\Gamma_{I}^{\prime}(R)$ is an undirected graph with the set of vertices $Z_{I}^{*}(R)$, where any two distinct vertices u, v of $\Gamma_{I}^{\prime}(R)$ are adjacent if and only if either $(R u+I) \cap(I$: $\{v\}) \neq I$ or $(R v+I) \cap(I:\{u\}) \neq I$.

Proposition 2.2. Let I be an ideal in a commutative ring R with unity. Then
(i) $\Gamma_{I}(R)$ is a subgraph of $\Gamma_{I}^{\prime}(R)$.
(ii) if $I=(0)$, then $\Gamma_{I}^{\prime}(R)=\Gamma^{\prime}(R)$ and $\Gamma(R)$ is a subgraph of $\Gamma_{I}^{\prime}(R)$.

Proof. Let I be an ideal of a commutative ring R.
(i) Clearly, $V\left(\Gamma_{I}^{\prime}(R)\right)=V\left(\Gamma_{I}(R)\right)$ and let u and v be any two adjacent vertices of $\Gamma_{I}(R)$. Then $u v \in I$ and $u \in(R u+I) \cap(I:\{v\}), v \in(R v+I) \cap(I:\{u\})$, i.e., $(R u+I) \cap(I:$ $\{v\}) \neq I,(R v+I) \cap(I:\{u\}) \neq I$. Hence u and v also adjacent in $\Gamma_{I}^{\prime}(R)$, and by definition $\Gamma_{I}(R)$ is a subgraph of $\Gamma_{I}^{\prime}(R)$.
(ii) It trivially holds.

Lemma 2.3. Let I be a radical ideal in a commutative ring R which is not prime, and let $u \in Z_{I}^{*}(R)$. Then
(i) $(I:\{u\})=\left(I:\left\{u^{n}\right\}\right)$ for each positive integer $n \geqslant 2$,
(ii) $(R u+I) \cap(I:\{u\})=I$.

Proof. Assume that I is a radical ideal of a ring R which is not prime and $u \in Z_{I}^{*}(R)$.
(i) Let $n \geq 2$. It is clear that $(I:\{u\}) \subseteq\left(I:\left\{u^{n}\right\}\right)$. If $v \in\left(I:\left\{u^{n}\right\}\right)$, then $v u^{n} \in I$. Since I is a radical ideal, $v u \in I$ and $v \in(I:\{u\})$. Thus $\left(I:\left\{u^{n}\right\}\right)=(I:\{u\})$.
(ii) This is clearly true.

The following lemma gives several useful properties of $\Gamma_{I}^{\prime}(R)$ and plays an important role in this section.

Lemma 2.4. Let I be a proper ideal of a ring R.
(i) If $u-v$ is not an edge of $\Gamma_{I}^{\prime}(R)$ for some $u, v \in Z_{I}^{*}(R)$, then $(I:\{u\})=(I:\{v\})$. If I is a radical ideal, then the converse is also true.
(ii) If $(I:\{u\}) \nsubseteq(I:\{v\})$ or $(I:\{v\}) \nsubseteq(I:\{u\})$ for some $u, v \in Z_{I}^{*}(R)$, then $u-v$ is an edge of $\Gamma_{I}^{\prime}(R)$.
(iii) If $(R u+I) \cap(I:\{u\}) \neq I$ for some $u \in Z_{I}^{*}(R)$, then u is adjacent to all other vertex in $\Gamma_{I}^{\prime}(R)$. In particular if $u \in \beta^{*}(I)$, then u is adjacent to every other vertex of $\Gamma_{I}^{\prime}(R)$.
(iv) $\Gamma_{I}^{\prime}(R)\left[\beta^{*}(I)\right]$ is a complete subgraph of $\Gamma_{I}^{\prime}(R)$.

Proof. Assume that I is an ideal of a ring R.
(i) If $u-v$ is not an edge of $\Gamma_{I}^{\prime}(R)$ for some $u, v \in Z_{I}^{*}(R)$, then $(R u+I) \cap(I:\{v\})=I$ and $(R v+I) \cap(I:\{u\})=I$. Thus $(R u+I)(I:\{v\}) \subseteq(R u+I) \cap(I:\{v\})=I$ and $(R v+I)(I:\{u\}) \subseteq(R v+I) \cap(I:\{u\})=I$ and hence $(I:\{u\})=(I:\{v\})$. If I is a radical ideal of R, then by Lemma 2.3(ii), $(R u+I) \cap(I:\{v\})=(R u+I) \cap(I:\{u\})=I$ and $(R v+I) \cap(I:\{u\})=(R v+I) \cap(I:\{v\})=I$. Thus $u-v$ is not an edge of $\Gamma_{I}^{\prime}(R)$.
(ii) This is clear by part (i).
(iii) Assume that $(R u+I) \cap(I:\{u\}) \neq I$ for some $u \in Z_{I}^{*}(R)$, and let v be another vertex of $\Gamma_{I}^{\prime}(R)$. If u is not adjacent to v, then by part $(i),(I:\{u\})=(I:\{v\})$ and hence $(R u+I) \cap(I:\{u\})=I$, a contradiction.
(iv) This is clearly true by (iii).

Theorem 2.5. Let I be an ideal of R. Then $\Gamma_{I}^{\prime}(R)$ is connected and dia $\left(\Gamma_{I}^{\prime}(R)\right) \leq 2$. Moreover if $\Gamma_{I}^{\prime}(R)$ contains a cycle, then $g r\left(\Gamma_{I}^{\prime}(R)\right) \leq 4$.

Proof. By Lemma 2.2 $(i), \Gamma_{I}(R)$ is a connected subgraph of $\Gamma_{I}^{\prime}(R)$ such that $V\left(\Gamma_{I}(R)\right)=$ $V\left(\Gamma_{I}^{\prime}(R)\right.$. Therefore $\Gamma_{I}^{\prime}(R)$ is connected and $g r\left(\Gamma_{I}^{\prime}(R)\right) \leq 4$. Now we prove that $\operatorname{dia}\left(\Gamma_{I}^{\prime}(R)\right) \leq 2$. If I is a non-radical ideal of R, then $\beta(I) \neq I$ and by Lemma 2.4 $(i i i)$, $\operatorname{dia}\left(\Gamma_{I}^{\prime}(R)\right) \leq 2$. If I is a radical ideal of R, then $\beta(I)=I$. Let $u, v \in V\left(\Gamma_{I}^{\prime}(R)\right)$ such that $d(u, v) \neq 1$. Then by Lemma 2.4 $(i),(I:\{u\})=(I:\{v\})$. Since $\beta(I)=I$, by Lemma $2.3(i i),(R v+I) \cap(I:\{v\})=I$. Therefore, for every $w \in(I:\{v\}) \backslash I$ both u, v are adjacent to w and $d(u, v)=2$. Thus $\operatorname{diam}\left(\Gamma_{I}^{\prime}(R)\right) \leq 2$. This completes the proof.

Lemma 2.6. Let I be a proper ideal of a commutative ring R. Then $Z_{I}(R)$ is a union of prime ideals of R which contain I.

Proof. Let us define a map $F: R \longrightarrow R / I$ by $F(x)=[x]$. Clearly, F is a homomorphism from R onto R / I. By 11, p. 3], $Z(R / I)=\bigcup P_{i}$ where P_{i} is a prime ideal in R / I. clearly, $Z_{I}(R)=\bigcup F^{-1}\left(P_{i}\right)$ where $F^{-1}\left(P_{i}\right)$ is a prime ideal in R which contains I.

Corollary 2.7. Let I be a radical ideal of a commutative ring R. Then $Z_{I}(R)=\bigcup P_{i}$, where $P_{i} \in \operatorname{Min}_{I}(R)$.

Proof. The corollary is immediate from Lemma 2.6 and [10, Corollory 2.4].

Theorem 2.8. Let I be a proper ideal of a commutative ring R and let $\Gamma_{I}^{\prime}(R)$ contain a cycle. Then $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=4$ if and only if I is a radical ideal with $\left|\operatorname{Min}_{I}(R)\right|=2$.

Proof. First assume that $g r\left(\Gamma_{I}^{\prime}(R)\right)=4$. If I is not a radical ideal, then $\beta(I) \neq I$ and by Lemma 2.4 iii) $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=3$, a contradiction. Hence I must be a radical ideal of R. Let $u \in Z_{I}^{*}(R)$. We will prove that $(I:\{u\})$ is a prime ideal of R. Suppose that $a b \in(I:\{u\})$ such that $a, b \notin(I:\{u\})$ but $a u b u \in I$. Hence for every $c \in(I:\{u\}) \backslash I$, it is easy to see that $c-a u-b u-c$ is a triangle, a contradiction. Hence $(I:\{u\})$ is a prime ideal. Since I is a radical ideal and by Lemma 2.3 (ii) together with [10, Theorem 2.1] implies that $(I:\{u\})$ is a minimal prime ideal which contains I. i.e., $(I:\{u\}) \in \operatorname{Min}_{I}(R)$. By similar arguments $(I:\{v\}) \in \operatorname{Min}_{I}(R)$, for each $v \in(I:\{u\}) \backslash I$. Now we prove that $\operatorname{Min}_{I}(R)=\{(I:\{u\}),(I:\{v\})\}$. It is sufficient to show that $(I:\{u\}) \cap(I:\{v\})=I$. Assume on contrary $(I:\{u\}) \cap(I:\{v\}) \neq I$ and $a \in(I:\{u\}) \cap(I:\{v\}) \backslash I$. Then $a-u-v-a$ is a triangle as $u v \in I$, a contradiction. Hence $\operatorname{Min}_{I}(R)=\{(I:\{u\}),(I:\{v\})\}$. Conversely, assume that I is a radical ideal of R and $\left|\operatorname{Min}_{I}(R)\right|=2$. Let $Q_{1}, Q_{2} \in$ $\operatorname{Min}_{I}(R)$. Since I is a radical ideal, we have $Z_{I}(R)=Q_{1} \cup Q_{2}$ and $Q_{1} \cap Q_{2}=I$, by Corollary 2.7 It is not difficult to check that $\Gamma_{I}^{\prime}(R)=K_{\left|Q_{1}^{*}\right|,\left|Q_{2}^{*}\right|}$, where $\left|Q_{1}^{*}\right|=\left|Q_{1} \backslash I\right|$ and $\left|Q_{2}^{*}\right|=\left|Q_{2} \backslash I\right|$. Since $\Gamma_{I}^{\prime}(R)$ contains a cycle, $g r\left(\Gamma_{I}^{\prime}(R)\right)=4$.

Example 2.9. For $R=\mathbb{Z}_{6} \times \mathbb{Z}_{3}$ and $I=(0) \times \mathbb{Z}_{3}$, it may be observed that $Q_{1}=(3) \times \mathbb{Z}_{3}$ and $Q_{2}=(2) \times \mathbb{Z}_{3}$ are the only two minimal prime ideals of R, which contain radical ideal I, where $Z_{I}(R)=Q_{1} \cup Q_{2}$ and $Q_{1} \cap Q_{2}=I$. Since $\left|Q_{1}^{*}\right|=3$ and $\left|Q_{2}^{*}\right|=6$, it can be easily seen in the following Figure 2.1 that $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{\left|Q_{1}^{*}\right|,\left|Q_{2}^{*}\right|}=K_{3,6}$ and $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=4$.

Figure 2.1

Figure 2.2

Example 2.10. For $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $I=(0) \times(0) \times \mathbb{Z}_{2}$, it can be easily seen in the above Figure $2.2, K_{2,2}$ is realizable as $\Gamma_{I}^{\prime}(R)$, which is not realizable as $\Gamma^{\prime}(R)$.

Corollary 2.11. Let I be a proper ideal of a commutative ring R. Then $\Gamma_{I}^{\prime}(R)$ is $K_{2,2}$ if and only if I is a radical ideal of R with $\left|\operatorname{Min}_{I}(R)\right|=2$ and each element of $\operatorname{Min}_{I}(R)$ contains exactly two elements other than I.

Example 2.12. For $R=\mathbb{Z}_{24}$ and $I=(8)$, it can be easily seen from the following Figures 2.3 and 2.4 that the ideal-based extended zero divisor graph $\Gamma_{I}^{\prime}(R)=K_{9}$ is different from ideal-based zero divisor graph $\Gamma_{I}(R)$ and $\Gamma_{I}(R)$ is a subgraph of $\Gamma_{I}^{\prime}(R)=K_{9}$.

$\Gamma_{I}(R)$

$$
R=\mathbb{Z}_{24} \text { and } I=(8)
$$

Figure 2.3

$\Gamma_{I}^{\prime}(R)=K_{9}$ $R=\mathbb{Z}_{24}$ and $I=(8)$

Figure 2.4

3. When Ideal-based Extended Zero Divisor Graph $\Gamma_{I}^{\prime}(R)$ and Ideal-based Zero

 Divisor Graph $\Gamma_{I}(R)$ are Identical?As we have seen in the previous section, ideal-based extended zero divisor graphs and ideal-based zero-divisor graphs are close to each other, it would be interesting to characterize ideals of a ring whose ideal-based extended zero-divisor graph and ideal-based zero divisor graph are identical. We first study the case when I is a radical ideal of R.
Theorem 3.1. Let I be a radical ideal of a commutative ring R with $\left|\operatorname{Min}_{I}(R)\right|=k \geq 2$. Then $k=2$ if and only if $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$.

Proof. First assume that $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. To prove that $k=2$, assume on the contrary Q_{1}, Q_{2}, Q_{3} are distinct minimal prime ideals of R which contain I. Let $u \in Q_{1} \backslash Q_{2} \cup Q_{3}$. Thus $Q_{2} \cup Q_{3} \nsubseteq(I:\{u\})$ as $(I:\{u\}) \subseteq Q_{2} \cap Q_{3}$. So one may choose $u v \notin I$, for some $v \in Q_{2} \cup Q_{3} \backslash Q_{1}$. Without loss of generality, assume that $v \in Q_{2} \backslash Q_{1}$. Obviously, (I: $\{v\}) \subseteq Q_{1}$. Also, it follows from [10, Theorem 2.1], there exists an element $w \in(I:\{u\})$ such that $w \notin Q_{1}$. Therefore, $(I:\{u\}) \neq(I:\{v\})$ and by Theorem [2.4(ii), $u-v$ is an edge of $\Gamma_{I}^{\prime}(R)$, a contradiction.

Conversely, assume that Q_{1} and Q_{2} are only two distinct minimal prime ideals of R which contain I. It is not difficult to check that $\Gamma_{I}(R)=\Gamma_{I}^{\prime}(R)=K_{\left|Q_{1}^{*}\right|,\left|Q_{2}^{*}\right|}$. Where $Q_{1}^{*}=Q_{1} \backslash I$ and $Q_{2}^{*}=Q_{2} \backslash I$.

The following corollary follows from Theorem 3.1
Corollary 3.2. Let I be a radical ideal of a commutative ring R, which is not a prime ideal. Then the following statements are equivalent:
(i) $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=4$.
(ii) $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$ and $g r\left(\Gamma_{I}(R)\right)=4$.
(iii) $\left|\operatorname{Min}_{I}(R)\right|=2$ and each minimal prime ideal of $\operatorname{Min}_{I}(R)$ has at least two different elements other then elements of I.
(iv) $\Gamma_{I}^{\prime}(R)=K_{m, n}$ for some $m, n \in \mathbb{N}$ and $m, n \geqslant 2$.

In the rest of this section we study the case that I is a non radical ideal of R
Theorem 3.3. Let I be a non radical ideal of a commutative ring R. Then the following statements are equivalent.
(i) $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$.
(ii) If $u v \notin I$ for some $u, v \in Z_{I}^{*}(R)$, then $(I:\{u\})=(I:\{v\})$ and $(I:\{u\})$ is a prime ideal of R.

Proof. $(i) \Rightarrow(i i)$ Assume that $u v \notin I$, for some $u, v \in Z_{I}^{*}(R)$. Since $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$, we deduce that $(I:\{u\})=(I:\{v\})$, by Lemma[2.4 i. We now show that $(I:\{u\})$ is a prime ideal of R. Let $a b \in(I:\{u\}), a \notin(I:\{u\})$ and $b \notin(I:\{u\})$. Then $a u \notin I$ and $b u \notin I$, $a, b \in Z_{I}^{*}(R)$. By Lemma 2.4 (iii), $u, v \notin \beta(I)$ and hence $u \neq a$ or $u \neq b$. Without loss of generality, one may assume that $u \neq b$. But since $a u \in(R u+I) \cap(I:\{v\})$, we find that $u b \in I$, a contradiction. Therefore, $(I:\{u\})$ is a prime ideal of R, as desired.
$(i i) \Rightarrow(i)$ If $u v \in I$ for all $u, v \in Z_{I}^{*}(R)$, then $\Gamma_{I}(R)$ is complete and by Proposition 2.2 (i), $\Gamma_{I}^{\prime}(R)$ is complete. i.e., $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. To complete the proof, we prove that if $u v \notin I$. Then $(R u+I) \cap(I:\{v\})=I$ and $(R v+I) \cap(I:\{v\})=I$. Since $(I:\{u\})=(I:\{v\})$ If $u \in(I:\{u\})$, then $u \in(I:\{v\})$ and hence $u v \in I$, a contradiction. Thus $u \notin(I:\{u\})$. Also, if $(R u+I) \cap(I:\{u\}) \neq I$, then there exists $r \in R$ such that $r u \notin I$ and $r u^{2} \in I$. Since $u^{2} \notin(I:\{u\})$ as $(I:\{u\})$ is a prime ideal of $R, r \in(I:\{u\})$, a contradiction. Hence $(R u+I) \cap(I:\{u\})=I$. Similarly, $(R v+I) \cap(I:\{v\})=I$.

Corollary 3.4. Let I be a non radical ideal of a commutative ring R and $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. Then the following hold.
(i) $Z_{I}(R)$ is an ideal of R.
(ii) $\beta(I)^{2} \subseteq I$.
(iii) $\left(I: Z_{I}(R)\right)=\beta(I)$.

Proof. Assume that I is not a radical ideal of R.
(i) Since I is a non radical ideal of $R, \beta^{*}(I) \neq \phi$. Let $u \in \beta^{*}(I)$. Then by Lemma 2.4 (iii) u is adjacent to every other vertex of $\Gamma_{I}^{\prime}(R)$. Since $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R), u$ is adjacent to every other vertex of $\Gamma_{I}(R)$, and hence by [13, Theorem 2.5(b)] [u], is adjacent to every other vertex of $\Gamma(R /(I)$ and by [2, Theorem 2.5], we find that $Z(R / I)$ is an annihilator ideal, i.e., $Z(R / I)=a n n_{R / I}([u])$. Since $Z(R / I)=a n n_{R / I}([u])$, we find that $(I:\{u\})=$ $Z_{I}(R)$ and thus $Z_{I}(R)$ is an ideal of R.
(ii) By the first part, clearly $\beta(I)^{2} \subseteq I$.
(iii) By the first part, clearly $\left(I: Z_{I}(R)\right)=\beta(I)$.

Corollary 3.5. Let I be a non radical ideal of a commutative ring R. Then $\Gamma_{I}^{\prime}(R)=$ $\Gamma_{I}(R)=K_{p} \vee \overline{K_{q}}$ if and only if $\left(I: Z_{I}(R)\right)$ is a prime ideal.

Proof. First assume that $\Gamma_{I}(R)=\Gamma_{I}^{\prime}(R)=K_{p} \vee \overline{K_{q}}$. Hence every vertex of K_{p} is adjacent to all the other vertices. But there is no adjacency between any two vertices of $\overline{K_{q}}$. This implies that $\left(I: Z_{I}(R)\right)=V\left(K_{p}\right) \cup I$, thus $u v \notin I$, for every $u, v \in V\left(\overline{K_{q}}\right)$, and hence $(I:\{u\})=(I:\{v\})=\left(I: Z_{I}(R)\right)$. By Theorem $3.3\left(I: Z_{I}(R)\right)$ is a prime ideal of R.
Conversely since ($I: Z_{I}(R)$) is a prime ideal of R, we find that uv $\in I$, for all $u, v \in\left(I: Z_{I}(R)\right)$ and $u v \notin I$ for all $u, v \in Z_{I}(R) \backslash\left(I: Z_{I}(R)\right)$. Now it is enough to show that $\Gamma_{I}(R)\left[\left(I: Z_{I}^{*}(R)\right)\right]$ is complete, $\Gamma_{I}(R)\left[Z_{I}(R) \backslash\left(I: Z_{I}(R)\right)\right]$ is null graph and $\Gamma_{I}(R)=\Gamma_{I}(R)\left[\left(I: Z_{I}^{*}(R)\right)\right] \vee \Gamma_{I}(R)\left[Z_{I}(R) \backslash\left(I: Z_{I}(R)\right)\right]$. We finally show that $\Gamma_{I}(R)=$ $\Gamma_{I}^{\prime}(R)$. Obviously, $u v \notin I$ if and only if $u, v \in Z_{I}(R) \backslash\left(I: Z_{I}(R)\right)$. This together with $\left(I: Z_{I}(R)\right)$ is a prime ideal, imply that if $u v \notin I$, then $(I:\{u\})=(I:\{v\})=\left(I: Z_{I}(R)\right)$. Thus $(I:\{u\})$ is a prime ideal of R. Now by Theorem 3.3, $\Gamma_{I}(R)=\Gamma_{I}^{\prime}(R)$.

Corollary 3.6. Let I be a non trivial non-radical ideal of a commutative ring R. Then the following statements are equivalent.
(i) $\Gamma_{I}^{\prime}(R)$ is a star graph.
(ii) $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=\infty$.
(iii) $\Gamma_{I}(R)=\Gamma_{I}^{\prime}(R)$ and $g r\left(\Gamma_{I}(R)\right)=\infty$.
(iv) $\left(I: Z_{I}(R)\right)$ is a prime ideal of $R,|I|=\left|\beta^{*}(I)\right|=\left|Z_{I}^{*}(R)\right|=2$.
(v) $\Gamma_{I}^{\prime}(R)=K_{1,1}$.
(vi) $\Gamma_{I}(R)=K_{1,1}$.

Proof. $(i) \Rightarrow(i i)$ It is clear.
(ii) \Rightarrow (iii) If $a \in \beta^{*}(I)$, then a is adjacent to every other vertex in $\Gamma_{I}^{\prime}(R)$. Since $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=\infty$ and $\Gamma_{I}(R)$ is a connected subgraph of $\Gamma_{I}^{\prime}(R)$, we conclude that $\Gamma_{I}^{\prime}(R)=$ $\Gamma_{I}(R)$, and hence $g r\left(\Gamma_{I}(R)\right)=\infty$.
$(i i i) \Rightarrow(i v)$ Since I is a non trivial non radical ideal of R, it can be easily seen that $\Gamma_{I}^{\prime}(R)$ is a star graph and $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. Therefore by Corollary 3.5 $\left(I: Z_{I}(R)\right)$ is a prime ideal of R. Since I is a nontrivial non radical ideal of $R,|I| \geq 2$ and $|\beta(I)| \geq 4$. If $|I|=m>2$, then $\beta(I) \mid=n \geq 6$ and we can assume that $u, v, w \in \beta^{*}(I)$ such that by Lemma 2.4 (iii),
$u-v-w-u$ is a triangle and $\Gamma_{I}^{\prime}(R)$ is not a star graph. Thus $|I|=2$. If $|I|=2$, then $|\beta(I)|=4$, otherwise by Lemma 2.4 $(i i i), \Gamma_{I}^{\prime}(R)$ is not a star graph. Thus $|I|=\left|\beta^{*}(I)\right|=2$. If $\left|Z_{I}^{*}(R)\right| \geq 3$, the we can assume that $\beta_{1}, \beta_{2} \in \beta^{*}(I)$ and $z \in Z_{I}^{*}(R) \backslash \beta^{*}(I)$ such that by Lemma 2.4 (iii), $\beta_{1}-\beta_{2}-z-\beta_{1}$ forms a triangle. Hence $|I|=\left|\beta^{*}(I)\right|=\left|Z_{I}^{*}(R)\right|=2$.
$(i v) \Rightarrow(v)$ It is clear by Corollary 3.5
$(v) \Rightarrow(v i)$ It is clear.
$(v i) \Rightarrow(i)$ It is clear.

4. Results on Relationship Between $\Gamma_{I}^{\prime}(R)$ and $\Gamma^{\prime}(R / I)$

In this section, we study the graph theoretical relationship between $\Gamma_{I}^{\prime}(R)$ and $\Gamma^{\prime}(R / I)$ under certain parameters like clique number, max (or min) degree, vertex chromatic number, also determine a necessary and sufficient condition for $\Gamma_{I}^{\prime}(R)$ to be regular and Eulerian.

Theorem 4.1. Let I be an ideal of a commutative ring R and let $u, v \in Z_{I}^{*}(R)$. Then
(i) if $[u]$ is adjacent to $[v]$ in $\Gamma^{\prime}(R / I)$, then u is adjacent to v in $\Gamma_{I}^{\prime}(R)$,
(ii) if u is adjacent to v in $\Gamma_{I}^{\prime}(R)$ and $[u] \neq[v]$, then $[u]$ is adjacent to $[v]$ in $\Gamma^{\prime}(R / I)$,
(iii) if u adjacent to v in $\Gamma_{I}^{\prime}(R)$ and $[u]=[v]$, then there exists $r \in Z_{I}^{*}(R)$ such that $r u \notin I$ and $r v \notin I$, but $r u^{2} \in I$ and $r v^{2} \in I$,
(iv) if u is adjacent to v in $\Gamma_{I}^{\prime}(R)$, then all (distinct) elements of $[u]$ and $[v]$ are adjacent in $\Gamma_{I}^{\prime}(R)$. If there exists $r \in R$ such that $r u \notin I$ and $r u^{2} \notin I$, then all the distinct elements of $[u]$ are adjacent in $\Gamma_{I}^{\prime}(R)$.

Proof. (i) If $[u]$ is adjacent to $[v]$ in $\Gamma^{\prime}(R / I)$, then either $(R / I)[u] \cap a n n_{R / I}([v]) \neq\{I\}$ or $(R / I)[v] \cap a n n_{R / I}([u]) \neq\{I\}$. This implies that either $(R u+I) \cap(I:\{v\}) \neq I$ or $(R v+I) \cap(I:\{u\}) \neq I$. By definition u is adjacent to v in $\Gamma_{I}^{\prime}(R)$.
(ii)If u is adjacent to v in $\Gamma_{I}^{\prime}(R)$ then either $(R u+I) \cap(I:\{v\}) \neq I$ or $(R v+I) \cap(I:\{u\}) \neq$ I. Since $[u] \neq[v]$, either $(R / I)[u] \cap a n n_{R / I}([v]) \neq\{I\}$ or $(R / I)[v] \cap a n n_{R / I}([u]) \neq\{I\}$. By definition $[u]$ is adjacent to $[v]$ in $\Gamma^{\prime}(R / I)$.
(iii) If u is adjacent to v in $\Gamma_{I}^{\prime}(R)$, then either $(R u+I) \cap(I:\{v\}) \neq I$ or $(R u+I) \cap(I$: $\{v\}) \neq I$. i.e., either $(R u+I) \cap(I:\{v\}) \backslash I \neq \phi$ or $(R u+I) \cap(I:\{v\}) \backslash I \neq \phi$. Suppose that $(R u+I) \cap(I:\{v\}) \backslash I \neq \phi$. Then there exists $\alpha \in(R u+I) \cap(I:\{v\}) \backslash I$ such that $\alpha=r u+i$ for some $r \in R \backslash I, i \in I$. Clearly ruv $\in I$. Since $[u]=[v], u=v+j$ for some $j \in I$, we find that $r u^{2}=r u u=r u(v+j)=r u v+r u j \in I$. Similarly $r v^{2} \in I$. Now if $(R u+I) \cap(I:\{v\}) \backslash I \neq \phi$, then by the similar proof there exists $r^{\prime} \in R \backslash I$ such that $r^{\prime} u^{2}, r^{\prime} v^{2} \in I$.
$(i v)$ If u is adjacent to v in $\Gamma_{I}^{\prime}(R)$, then either $(R u+I) \cap(I:\{v\}) \neq I$ or $(R v+I) \cap(I$: $\{u\}) \neq I$. Let $u+i \in[u], v+j \in[v]$. Then $(R(u+i)+I) \cap(I:\{v+j\}) \neq I$ or $(R(v+j)+I) \cap(I:\{u+i\}) \neq I$. By definition $u+i$ is adjacent to $v+j$ in $\Gamma_{I}^{\prime}(R)$.

Proposition 4.2. Let I be an ideal of a ring R. Then $\Gamma_{I}^{\prime}(R)$ contains $|I|$ disjoint subgraphs isomorphic to $\Gamma^{\prime}(R / I)$.

Proof. Let $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq Z_{I}^{*}(R)$ be a set of coset representative vertices of $\Gamma^{\prime}(R / I)$,i.e., $V\left(\Gamma^{\prime}(R / I)\right)=\left\{\left[a_{\lambda}\right]: \lambda \in \Lambda\right\}$ and for each $\alpha \in I$, define a graph $G_{\alpha}=\left(V_{\alpha}, E_{\alpha}\right)$ with $V_{\alpha}=$ $\left\{a_{\lambda}+\alpha: \lambda \in \Lambda\right\}$, where $a_{\gamma}+\alpha$ is adjacent to $a_{\delta}+\alpha$ in G_{α} whenever, [$\left.a_{\gamma}\right]$ is adjacent to [a_{δ}] in $\Gamma^{\prime}(R / I)$. i.e., either $(R / I)\left[a_{\gamma}\right] \cap a n n_{(R / I)}\left(\left[a_{\delta}\right]\right) \neq\{I\}$ or $(R / I)\left[a_{\delta}\right] \cap a n n_{(R / I)}\left(\left[a_{\gamma}\right]\right) \neq\{I\}$. By Theorem 4.1 G_{α} is a subgraph of $\Gamma_{I}^{\prime}(R)$. Also each $G_{\alpha} \simeq \Gamma_{I}^{\prime}(R / I)$, and $G_{\alpha} \cap G_{\beta}$ are disjoint if $\alpha \neq \beta$ because if $\alpha \neq \beta$ then $V\left(G_{\alpha}\right) \cap V\left(G_{\beta}\right)=\phi$.

There is a strong relation between $\Gamma_{I}^{\prime}(R)$ and $\Gamma^{\prime}(R / I)$. Next theorem shows that how one can construct $\Gamma_{I}^{\prime}(R)$ from $\Gamma_{I}^{\prime}(R / I)$.
Theorem 4.3. Let $\Gamma_{I}^{\prime}(R)$ be an ideal based extended zero-divisor graph of a ring R. Then we can always construct $\Gamma_{I}^{\prime}(R)$ from $\Gamma^{\prime}(R / I)$.

Proof. Let $\left\{\left[a_{\lambda}\right] \mid \lambda \in \Lambda\right\}$ be a set of coset representative vertices of $\Gamma^{\prime}(R / I)$, i.e., $V\left(\Gamma^{\prime}(R / I)\right)=\left\{\left[a_{\lambda}\right]: \lambda \in \Lambda\right\}$ and for each $\alpha \in I$, define a graph $G_{\alpha}=\left(V_{\alpha}, E_{\alpha}\right)$ with $V_{\alpha}=$ $\left\{a_{\lambda}+\alpha: \lambda \in \Lambda\right\}$, where $a_{\gamma}+\alpha$ is adjacent to $a_{\delta}+\alpha$ in G_{α} whenever, $\left[a_{\gamma}\right]$ is adjacent to [a_{δ}] in $\Gamma^{\prime}(R / I)$, i.e., either $(R / I)\left[a_{\gamma}\right] \cap \operatorname{ann} n_{(R / I)}\left(\left[a_{\delta}\right]\right) \neq\{I\}$ or $(R / I)\left[a_{\delta}\right] \cap \operatorname{ann} n_{(R / I)}\left(\left[a_{\gamma}\right]\right) \neq\{I\}$. Define a graph $H=(V(H), E(H))$ where $V(H)=\bigcup_{\alpha \in I} V\left(G_{\alpha}\right)$ and $E(H)$ is:
(i) all edge contained in G_{α} for each $\alpha \in I$.
(ii) For distinct $\gamma, \delta \in \Lambda$ and for any $\alpha, \beta \in I, a_{\gamma}+\alpha$ is adjacent to $a_{\delta}+\beta$ if and only if $\left[a_{\gamma}\right]$ is adjacent to $\left[a_{\delta}\right]$ in $\left(\Gamma^{\prime}(R / I)\right)$.
(iii) For $\gamma \in \Lambda$ and distinct $\alpha, \beta \in I, a_{\gamma}+\alpha$ is adjacent to $a_{\gamma}+\beta$ if and only if there exists a $r \in R$ such that $r a_{\gamma} \notin I$, but $r a_{\gamma}^{2} \in I$.
Clearly, $V(H) \subseteq V\left(\Gamma_{I}^{\prime}(R)\right)$. Note that if $u \in V\left(\Gamma_{I}^{\prime}(R)\right)$, then by Theorem $4.1[u] \in$ $V\left(\Gamma^{\prime}(R / I)\right)$ and therefore, $\left.V\left(\Gamma_{I}^{\prime}(R)\right) \subseteq V(H)\right)$. So $V(H)=V\left(\Gamma_{I}^{\prime}(R)\right)$. By Theorem 4.1 all edges which are defined above by (i) and $(i i)$ are also edges in $\Gamma_{I}^{\prime}(R)$. If $a_{\gamma}+\alpha$ is adjacent to $a_{\gamma}+\beta$ for distinct $\alpha, \beta \in I$, then there exists $r \in R$ such that $r a_{\gamma} \notin I$, but $r a_{\gamma}^{2} \in I$. Therefore, $\left(R\left(a_{\gamma}+\beta\right)+I\right) \cap\left(I:\left\{a_{\gamma}+\alpha\right\}\right) \neq I$ and $\left(R\left(a_{\gamma}+\gamma\right)+I\right) \cap\left(I:\left\{a_{\gamma}+\beta\right)\right\} \neq I$. Thus, the edges which are defined above by (iii) are also edge of $\Gamma_{I}^{\prime}(R)$. Let u and v be distinct adjacent vertices of $\Gamma_{I}^{\prime}(R)$. Then there exist $\alpha, \beta \in I$ and $\gamma, \delta \in \Lambda$ such that $u=a_{\gamma}+\alpha$ and $v=a_{\delta}+\beta$. If $\gamma \neq \delta$ and u adjacent to v in $\Gamma_{I}^{\prime}(R)$. Hence by Theorem 4.1, $\left[a_{\gamma}\right]$ is adjacent to $\left[a_{\delta}\right]$ in $\Gamma^{\prime}(R / I)$. Hence, the edge $u-v$ corresponds to an edge of type (i) or (ii) of H. If $\gamma=\delta$, then there exists $r \in R$ such that $r a_{\gamma} \notin I$, but $r a_{\gamma}^{2} \in I$ and the edge $u-v$ corresponds to an edge of type (iii) of H.

Proposition 4.4. Let I be an ideal of a ring R. If $\Gamma^{\prime}(R / I)$ is infinite, then $\Gamma_{I}^{\prime}(R)$ is infinite. If $\Gamma^{\prime}(R / I)$ is a graph with n vertices, then $\Gamma_{I}^{\prime}(R)$ is a graph with $n|I|$ vertices.

Proof. This is immediate from Theorem 4.3
Definition 4.5. Let $\left\{\left[a_{\lambda}\right] \mid \lambda \in \Lambda\right\}$ be a set of coset representative vertices of $\Gamma^{\prime}(R / I)$. $\left[a_{\lambda}\right]$ is said to be a row of $\Gamma_{I}^{\prime}(R)$, and if there exists $r \in R$ such that $r a_{\lambda} \notin I$ and $r a_{\lambda}^{2} \in I$, then we call $\left[a_{\lambda}\right]$ connected row of $\Gamma_{I}^{\prime}(R)$ and ξ_{n} denote the n connected row which is contained in a maximal complete subgraph of $\Gamma^{\prime}(R / I)$.
Remark 4.6. Let I be an ideal in a commutative ring R with unity. Then every connected column of $\Gamma_{I}(R)$ defined in [13] is a connected row of $\Gamma_{I}^{\prime}(R)$. By Example 2.12 and Figures 2.2 and 2.4 we observe that $[2]=\{2,10,18\}$ is a connected row of $\Gamma_{I}^{\prime}(R)$ which is not a connected column of $\Gamma_{I}(R)$.

Theorem 4.7. Let I be a ideal in a commutative ring R. Then $\omega\left(\Gamma_{I}^{\prime}(R)\right)=\xi_{n}|I|+$ $\omega\left(\Gamma^{\prime}(R / I)\right)-n$.

Proof. Suppose that $\omega\left(\Gamma^{\prime}(R / I)\right)=k$ and $A=\left\{\left[a_{1}\right],\left[a_{2}\right], \cdots,\left[a_{k}\right]\right\} \subseteq V\left(\Gamma^{\prime}(R / I)\right)$ such that $\Gamma^{\prime}(R / I)[A]$ is an induced maximal complete subgraph of $\Gamma^{\prime}(R / I)$. Let $B=\bigcup\left[a_{i}\right]$ where $\left[a_{i}\right]$ is a connected row and $\left[a_{i}\right] \in A, C=\left\{a_{i} \mid\left[a_{i}\right]\right.$ is a non-connected row, $\left.\left[a_{i}\right] \in A\right\}$. Then by Theorem 4.1] $\Gamma_{I}^{\prime}(R)[B \cup C]$ is a complete subgraph in $\Gamma_{I}^{\prime}(R)$. If $B \cup C \cup\{u\}$ is a complete subgraph in $\Gamma_{I}^{\prime}(R)$, then $\{[u]\} \cup A$ forms a clique of size $k+1$, a contradiction. Thus $\Gamma_{I}^{\prime}(R)[B \cup C]$ is a maximal complete subgraph. Consequently, $\omega\left(\Gamma_{I}^{\prime}(R)\right)=|B \cup C|=$ $\xi_{n}|I|+\omega\left(\Gamma^{\prime}(R / I)\right)-n$.

Theorem 4.8. Let I be an ideal of a commutative ring R such that $\Gamma_{I}^{\prime}(R)$ has no connected row. Then
(i) $\omega\left(\Gamma_{I}^{\prime}(R)\right)=\omega\left(\Gamma^{\prime}(R / I)\right)$,
(ii) $\chi\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)$.

Proof. (i) Clearly, we observe that $\omega\left(\Gamma^{\prime}(R / I)\right) \leq \omega\left(\Gamma_{I}^{\prime}(R)\right)$. Consider the case, when $\omega\left(\Gamma^{\prime}(R / I)\right)=k<\infty$, and suppose that H is a complete subgraph of $\Gamma_{I}^{\prime}(R)$ with the set of (distinct) vertices $u_{1}, u_{2}, \cdots, u_{k+1}$. Since H is complete, we get a complete subgraph of $\Gamma_{I}^{\prime}(R)$ with the set of vertices $\left[u_{1}\right],\left[u_{2}\right], \cdots,\left[u_{k+1}\right]$. Now $\omega\left(\Gamma^{\prime}(R / I)\right)=k$ implies that $\left[u_{l}\right]=\left[u_{m}\right]$ for some $l \neq m$ and hence $u_{l}=u_{m}+i$ for some $i \in I$. Since H is complete, u_{l} adjacent to u_{m} in $\Gamma_{I}^{\prime}(R)$. Then we get $r \in R$ such that $r a_{l} \notin I$, but $r a_{l}^{2} \in I$ and $\left[u_{l}\right]$ is a connected row $\Gamma_{I}^{\prime}(R)$, a contradiction. Hence $\omega\left(\Gamma_{I}^{\prime}(R)\right)=k$.
(ii) By Corollary 4.2 $\Gamma^{\prime}(R / I)$ is isomorphic to a subgraph of $\Gamma_{I}^{\prime}(R)$ and hence $\chi\left(\Gamma^{\prime}(R / I)\right) \leq \chi\left(\Gamma_{I}^{\prime}(R)\right.$. Suppose that $\chi\left(\Gamma^{\prime}(R / I)\right)=n$ and $C_{1}, C_{2}, \cdots, C_{n}$ are distinct color classes of $\Gamma^{\prime}(R / I)$. Consider the set $S_{j}=\bigcup_{[a] \in C_{j}}[a]$. Since $\Gamma_{I}^{\prime}(R)$ has no connected row, each S_{j} is an independent set of $\Gamma_{I}^{\prime}(R)$ and $V\left(\Gamma_{I}^{\prime}(R)\right)=\bigcup_{j=1}^{n} S_{j}$. Thus $S_{1}, S_{2}, \cdots, S_{n}$ are distinct color classes for $\Gamma_{I}^{\prime}(R)$ and the graph $\Gamma_{I}^{\prime}(R)$ colored by n distinct proper colors, and therefore $\chi\left(\Gamma_{I}^{\prime}(R) \leq n\right.$. Hence $\chi\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma_{I}^{\prime}(R)\right.$.

Corollary 4.9. Let I be a radical ideal of a commutative ring R. Then
(i) $\omega\left(\Gamma_{I}^{\prime}(R)\right)=\omega\left(\Gamma^{\prime}(R / I)\right)$.
(ii) $\chi\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)$.

Theorem 4.10. Let I be an ideal in a commutative ring R. If $\omega\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)$, then $\omega\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma_{I}^{\prime}(R)\right)$.

Proof. Suppose that $\omega\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)=n$. Let $\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} \subseteq Z_{I}^{*}(R)$ be a set of coset representative vertices of $\Gamma^{\prime}(R / I)$, i.e., $V\left(\Gamma^{\prime}(R / I)\right)=\left\{\left[a_{\lambda}\right]: \lambda \in \Lambda\right\}$ and $C_{1}, C_{2}, \cdots, C_{n}$ are distinct color classes of $\Gamma^{\prime}(R / I)$. Since $\omega\left(\Gamma^{\prime}(R / I)\right)=n$, there exists $\left[a_{1}\right],\left[a_{2}\right], \cdots,\left[a_{n}\right] \in V\left(\Gamma^{\prime}(R / I)\right)$ such that any two of them lies in distinct color classes. Without loss of generality, assume that $\left[a_{j}\right] \in C_{j}$, for all $j \in\{1,2 \cdots, n\}$. $A=\left\{\left[a_{1}\right],\left[a_{2}\right], \cdots,\left[a_{n}\right]\right\}$. Then $\Gamma^{\prime}(R / I)[A]$ is a maximal complete subgraph of $\Gamma^{\prime}(R / I)$. Let $B=\left\{a_{j} \mid\left[a_{j}\right] \in A\right\} \cup\left\{a_{j}+i \mid\left[a_{j}\right] \in A, r a_{j} \notin I\right.$ and $r a_{j}^{2} \in I$ for some $\left.r \in R, i \in I^{*}\right\}$. Since $\Gamma^{\prime}(R / I)[A]$ is a maximal complete subgraph of $\Gamma^{\prime}(R / I), \Gamma_{I}^{\prime}(R)[B]$ is a maximal complete subgraph of $\Gamma_{I}^{\prime}(R)$, and therefore $|B| \leq \omega\left(\Gamma_{I}^{\prime}(R)\right)$. Hence we color the vertices of
$\Gamma_{I}^{\prime}(R)$ with $|B|$ distinct colours. Clearly $[a]$, an induced independent set of $\Gamma_{I}^{\prime}(R)$ when there does not exists any $r \in R$ such that $r a \notin I$ and $r a^{2} \in I$ with $[a] \in A$ and color the vertices $a+i \in[a]$ with the colour of a for all $i \in I$. Let $U=\{a:[a] \in A\}$. Then U have distinct colors. For each $y \notin U,[y]=\left[a_{t}\right]$ such that $t \notin\{1,2, \cdots, n\}$. Since $\left[a_{t}\right] \in S_{j}$ and $S_{j}^{\prime} s$ are independent, for each $i \in I$ color the vertices $a_{t}+i$ with the color of $a_{j}+i$. Hence color the vertices of $C=V\left(\Gamma_{I}(R)\right) \backslash U$ in this way, and this coloring is proper, therefore $\chi\left(\Gamma_{I}(R)\right) \leq|B|$. Since $\omega\left(\Gamma_{I}(R)\right) \leq \chi\left(\Gamma_{I}(R)\right), \chi\left(\Gamma_{I}(R)\right)=\omega\left(\Gamma_{I}(R)\right)$. This completes the proof.

Lemma 4.11. Let I be an ideal of a ring R and $a \in V\left(\Gamma_{I}^{\prime}(R)\right)$. Then

$$
\operatorname{deg}(a)= \begin{cases}|I| \operatorname{deg}_{\Gamma^{\prime}}([a]), & \text { if }[a] \text { is a non }- \text { connected row, } \\ |I| \operatorname{deg}_{\Gamma^{\prime}}([a])+|I|-1, & \text { if }[a] \text { is a connected row. }\end{cases}
$$

Proof. Clearly, $\operatorname{deg}(a) \geq|I| \operatorname{deg}_{\Gamma^{\prime}}([a])$. If $[a]$ is connected row, then $\Gamma_{I}^{\prime}(R)[[a]]$ is a complete subgraph of $\Gamma_{I}^{\prime}(R)$. Thus $\operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a])+|I|-1$. If $[a]$ is non-connected row, then $\operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a])$.

Lemma 4.12. Let I be an ideal of a ring R Then

$$
\delta\left(\Gamma_{I}^{\prime}(R)\right)= \begin{cases}|I| \delta\left(\Gamma^{\prime}(R / I)\right)+|I|-1, & \text { if each }[a] \in V\left(\delta\left(\Gamma^{\prime}(R / I)\right) \text { is a connected row },\right. \\ |I| \delta\left(\Gamma^{\prime}(R / I)\right), & \text { otherwise } .\end{cases}
$$

Proof. If $[a] \in V\left(\delta\left(\Gamma^{\prime}(R / I)\right)\right.$ is a connected row, then $\operatorname{deg}(a) \leq \operatorname{deg}(b)$ for all $b \in V\left(\Gamma_{I}^{\prime}(R)\right.$ and by Lemma $4.11 \operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a])+|I|-1\left(\right.$ or $\left.\operatorname{deg}(a)=|I| \delta\left(\Gamma^{\prime}(R / I)\right)+|I|-1\right)$. Thus $\delta\left(\Gamma_{I}^{\prime}(R)\right)=|I| \delta\left(\Gamma^{\prime}(R / I)\right)+|I|-1$. Otherwise, $\operatorname{deg}(a) \leq \operatorname{deg}(b)$ for all $b \in V\left(\Gamma_{I}^{\prime}(R)\right.$ and by Lemma4.11 $\operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a]) \quad\left(\right.$ or $\operatorname{deg}(a)=|I| \delta\left(\Gamma^{\prime}(R / I)\right)$. Thus $\delta\left(\Gamma_{I}^{\prime}(R)\right)=$ $|I| \delta\left(\Gamma^{\prime}(R / I)\right)$.

Lemma 4.13. Let I be an ideal of a ring R Then

$$
\Delta\left(\Gamma_{I}^{\prime}(R)\right)= \begin{cases}|I| \Delta\left(\Gamma^{\prime}(R / I)\right)+|I|-1, & \text { if each }[a] \in V\left(\Delta\left(\Gamma^{\prime}(R / I)\right)\right. \text { is a non connected row, } \\ |I| \Delta\left(\Gamma^{\prime}(R / I)\right), & \text { otherwise. }\end{cases}
$$

Proof. If $[a] \in V\left(\Delta\left(\Gamma^{\prime}(R / I)\right)\right.$ is a non-connected row, then $\operatorname{deg}(b) \leq \operatorname{deg}(a)$ for all $b \in$ $V\left(\Gamma_{I}^{\prime}(R)\right.$ and by Lemma 4.11 $\operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a])\left(\right.$ or $\left.\operatorname{deg}(a)=|\bar{I}| \Delta\left(\Gamma^{\prime}(R / I)\right)\right)$. Thus $\Delta\left(\Gamma_{I}^{\prime}(R)\right)=|I| \delta\left(\Gamma^{\prime}(R / I)\right)$. Otherwise, $\operatorname{deg}(b) \leq \operatorname{deg}(a)$ for all $b \in V\left(\Gamma_{I}^{\prime}(R)\right.$ by Lemma 4.11 $\operatorname{deg}(u)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a]+|I|-1)\left(\right.$ or $\operatorname{deg}(a)=|I| \Delta\left(\Gamma^{\prime}(R / I)+|I|-1\right)$. Thus $\Delta\left(\Gamma_{I}^{\prime}(R)\right)=$ $|I| \Delta\left(\Gamma^{\prime}(R / I)\right)+|I|-1$.

Theorem 4.14. Let I be an ideal in a commutative ring R. If $\Gamma_{I}^{\prime}(R)$ has no connected row, then $\Gamma_{I}^{\prime}(R)$ is Eulerian if and only if $|I|$ is even or $\Gamma^{\prime}(R / I)$ is Eulerian.

Proof. Suppose that $\Gamma_{I}^{\prime}(R)$ is Eulerian. Then $\operatorname{deg}(a)$ is even for all $a \in V\left(\Gamma_{I}^{\prime}(R)\right)$. Since $\Gamma_{I}^{\prime}(R)$ has no connected row, $\operatorname{deg}(a)=|I| \operatorname{deg}_{\Gamma^{\prime}}([a])$ is even for all $[a] \in V\left(\Gamma^{\prime}(R / I)\right)$. Hence either $|I|$ is even or $\operatorname{deg}_{\Gamma^{\prime}}([a])$ is even for all $[a] \in V\left(\Gamma^{\prime}(R / I)\right)$, i.e., $\Gamma^{\prime}(R / I)$ is Eulerian.

Conversely, assume that $\Gamma^{\prime}(R / I)$ is Eulerian. Hence $\operatorname{deg}_{\Gamma^{\prime}}([a])$ is even for all $[a] \in$ $V\left(\Gamma^{\prime}(R / I)\right)$. Since $\Gamma_{I}^{\prime}(R)$ has no connected row, $\operatorname{deg}(a)=|I| \operatorname{deg} \Gamma_{\Gamma^{\prime}}([a])$ is even for all $a \in V\left(\Gamma_{I}^{\prime}(R)\right.$. i.e., $\Gamma_{I}^{\prime}(R)$ is Eulerian. If $|I|$ is even, then $\Gamma_{I}^{\prime}(R)$ is Eulerian.

Theorem 4.15. Let I be an ideal in a commutative ring R. If $\Gamma_{I}^{\prime}(R)$ has a connected row, then $\Gamma_{I}^{\prime}(R)$ is Eulerian if and only if $|I|$ is odd and $\Gamma^{\prime}(R / I)$ is Eulerian.

Proof. Suppose that $\Gamma_{I}^{\prime}(R)$ is Eulerian. Since $\Gamma_{I}^{\prime}(R)$ has a connected row, there exists $x \in V\left(\Gamma_{I}^{\prime}(R)\right)$ such that $[x]$ is a connected row in $\Gamma_{I}^{\prime}(R)$ and by Lemma 4.11 $\operatorname{deg}(x)=$ $|I| d e g_{\Gamma^{\prime}}[x]+|I|-1$ is even. Thus we have the following cases:
$\operatorname{Case}(a)|I| d e g_{\Gamma^{\prime}}[x]$ and $|I|-1$ are odd. Then $|I|$ is even. Since $|I| d e g_{\Gamma^{\prime}}[x]$ is odd and $|I|$ is even. Since $|I|$ is even, $|I| d e g_{\Gamma^{\prime}}[x]$ can not be odd, and this case is not possible.
$\operatorname{Case}(b)|I| d e g_{\Gamma^{\prime}}[x]$ and $|I|-1$ are even. Thus $|I| d e g_{\Gamma^{\prime}}[x]$ is even for all $[x] \in V\left(\Gamma^{\prime}(R / I)\right)$. i.e., $d e g_{\Gamma^{\prime}}[x]$ is even for all $[x] \in V\left(\Gamma^{\prime}(R / I)\right)$. Therefore $\Gamma^{\prime}(R / I)$ is Eulerian and $|I|$ is odd.

Conversely, assume that $\Gamma^{\prime}(R / I)$ is Eulerian, $|I|$ is odd and $x \in V\left(\Gamma_{I}^{\prime}(R)\right)$. If $[x]$ is a connected row, then $\operatorname{deg}(x)=|I| \operatorname{deg}_{\Gamma^{\prime}}[x]+|I|-1$ is even and if $[x]$ is a non-connected row, then $\operatorname{deg}(x)=|I| \operatorname{deg}_{\Gamma^{\prime}}[x]$ is also even. Hence $\Gamma_{I}^{\prime}(R)$ is Eulerian.

Theorem 4.16. Let I be an ideal in a commutative ring R. If $\Gamma_{I}^{\prime}(R)$ has no connected row. Then $\Gamma_{I}^{\prime}(R)$ is regular if and only if $\Gamma^{\prime}(R / I)$ is regular.

Proof. Suppose that $\Gamma_{I}^{\prime}(R)$ is regular graph, $\operatorname{deg}(x)=n$ for all $x \in V\left(\Gamma_{I}^{\prime}(R)\right)$. Since $\Gamma_{I}^{\prime}(R)$ has no connected row, by Lemma4.11, $\operatorname{deg}(x)=|I| d e g_{\Gamma^{\prime}}[x]=n$ for all $[x] \in V\left(\Gamma^{\prime}(R / I)\right)$. Therefore $d e g_{\Gamma^{\prime}}[x]=n /|I|$ for all $[x] \in V\left(\Gamma^{\prime}(R / I)\right)$. Clearly, if n is prime, then $\Gamma^{\prime}(R / I) \approx K_{2}$. Otherwise $\Gamma^{\prime}(R / I)$ is a $\frac{n}{|I|}$-regular.

Conversely, suppose that $\Gamma^{\prime}(R / I)$ is a regular graph. Then $d e g_{\Gamma^{\prime}}[x]=n \forall[x] \in$ $V\left(\Gamma^{\prime}(R / I)\right)$. Since $\Gamma_{I}^{\prime}(R)$ has no connected row, by Lemma 4.11, for all $x \in V\left(\Gamma_{\prime}^{\prime}(R)\right)$ $\operatorname{deg}(x)=|I| \operatorname{deg}_{\Gamma^{\prime}}[x]=n|I|$. Therefore $\Gamma_{I}^{\prime}(R)$ is $n|I|$-regular.

Theorem 4.17. Let I be an ideal in a commutative ring R and each row is connected. Then $\Gamma_{I}^{\prime}(R)$ is n-regular, where $n \neq|I|-1$ if and only if $\Gamma^{\prime}(R / I)$ is regular.

Proof. Assume that $\Gamma_{I}^{\prime}(R)$ is a n-regular graph. Then $\operatorname{deg}(x)=n$ for all $x \in V\left(\Gamma_{I}^{\prime}(R)\right)$. Since each row is connected, by Lemma 4.11, $\operatorname{deg}(x)=|I| d e g_{\Gamma^{\prime}}[x]+|I|-1$, for all $x \in$ $V\left(\Gamma_{I}^{\prime}(R)\right)$ and hence $d e g_{\Gamma^{\prime}}[x]=\frac{n-|I|+1}{|I|}$ for all $[x] \in V\left(\Gamma^{\prime}(R / I)\right)$. Since $d e g_{\Gamma^{\prime}}[x] \neq 0$ and $n \neq|I|-1, \Gamma^{\prime}(R / I)$ is a $\left(\frac{n-|I|+1}{|I|}\right)$-regular graph.

Conversely, suppose that $\Gamma^{\prime}(R / I)$ is a regular graph. Then $d e g_{\Gamma^{\prime}}[x]=p$ for all $[x] \in$ $V\left(\Gamma^{\prime}(R / I)\right.$. Since each row is connected, by Lemma 4.11, $\operatorname{deg}(x)=p|I|+|I|-1$ for all $x \in V\left(\Gamma_{I}^{\prime}(R)\right.$. Thus $\Gamma_{I}^{\prime}(R$ is a n-regular.

Theorem 4.18. Let I be an ideal of a ring R. Then $1 \leq \chi\left(\Gamma^{\prime}(R / I)\right) \leq \chi\left(\Gamma_{I}^{\prime}(R)\right) \leq$ $|I| \chi\left(\Gamma^{\prime}(R / I)\right)$.

Proof. Clearly, $1 \leq \chi\left(\Gamma^{\prime}(R / I)\right)$. Since $\Gamma^{\prime}(R / I)$ is isomorphic to a subgraph of $\Gamma_{I}^{\prime}(R)$, $\chi\left(\Gamma^{\prime}(R / I)\right) \leq \chi\left(\Gamma_{I}^{\prime}(R)\right)$. Let $\chi\left(\Gamma^{\prime}(R / I)\right)=n$, and $C_{1}, C_{2}, \cdots, C_{n}$ be distinct color classes for $\Gamma^{\prime}(R / I)$. Assume that each row is connected. Now for each $1 \leq j \leq n$, and $i \in I$ define a set $D_{j i}=\left\{x+j:[x] \in C_{j}\right\}$. Since C_{j} 's are independent, $D_{j i}$ are independent. Also $\bigcup_{1 \leq j \leq n}\left(\bigcup_{i \in I}\right) D_{j i}=V\left(\Gamma_{I}^{\prime}(R)\right.$. Thus $\left\{D_{j i}: 1 \leq j \leq n, i \in I\right\}$ are distinct color classes for $\Gamma_{I}^{\prime}(R) .|I| n$ colors are required for colouring and this colouring is proper. Hence $\chi\left(\Gamma_{I}^{\prime}(R)\right) \leq|I| \chi\left(\Gamma^{\prime}(R / I)\right)$.

Proposition 4.19. Let I be a proper ideal of a commutative ring R. If $\Gamma_{I}^{\prime}(R)$ has a connected row, then $|I| \leq \omega\left(\Gamma_{I}^{\prime}(R)\right)$.

Proof. Assume that $[u]$ is a connected row in $\Gamma_{I}^{\prime}(R)$. Then there exists $r \in R$ such that $r u \notin I$ and $r u^{2} \in I$. If $u_{1}, u_{1} \in[u]$, then $\left(R u_{1}+I\right) \cap\left(I:\left\{u_{2}\right\}\right) \neq I$ and by definition u_{1} is adjacent to u_{2} in $\Gamma_{I}^{\prime}(R)$. i.e., $K^{|I|}$ is a subgraph of $\Gamma_{I}^{\prime}(R)$, and hence $|I| \leq \omega\left(\Gamma_{I}^{\prime}(R)\right)$.

Corollary 4.20. Let I be a proper ideal of a commutative ring R such that $|I|=\infty$. If $\Gamma_{I}^{\prime}(R)$ has a connected row, then $\omega\left(\Gamma_{I}^{\prime}(R)\right)=\infty$.

Corollary 4.21. Let I be a proper ideal of a commutative ring R such that $\left|V\left(\Gamma_{I}^{\prime}(R)\right)\right| \geq 2$. If $\Gamma_{I}^{\prime}(R)$ has a connected row, then $|I|+1 \leq \omega\left(\Gamma_{I}^{\prime}(R)\right)$.

Lemma 4.22. Let I be an ideal of a commutative ring R. Then $g r\left(\Gamma_{I}^{\prime}(R)\right) \leq g r\left(\Gamma^{\prime}(R / I)\right)$.
Proof. If $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right)=\infty$, then our result holds. Now suppose that $\operatorname{gr}\left(\Gamma^{\prime}(R / I)\right)=k<\infty$. Let $\left[a_{1}\right]-\left[a_{2}\right]-, \cdots,-\left[a_{k}\right]-\left[a_{1}\right]$ be a cycle in $\Gamma_{I}^{\prime}(R)$ with k distinct vertices. Then $a_{1}-a_{2}-, \cdots,-a_{k}-a_{1}$ is also a cycle in $\Gamma_{I}^{\prime}(R)$ of length k. Hence $\operatorname{gr}\left(\Gamma_{I}^{\prime}(R)\right) \leq k$.

5. When $\Gamma_{I}^{\prime}(R)$ is Weakly Perfect and Planar?

In this section, our aim is to study the planarity of ideal based extended zero-divisor graph $\Gamma_{I}^{\prime}(R)$ and explore the condition under which $\Gamma_{I}^{\prime}(R)$ is planar. For a radical ideal I of an Artinian ring R, we show that $\Gamma_{I}^{\prime}(R)$ is weakly perfect.

Theorem 5.1. Let I be an ideal of a commutative ring R. Then $\Gamma_{I}^{\prime}(R)$ is a complete n-partite graph if and only if $\Gamma^{\prime}(R / I)$ is a complete n-partite graph.

Proof. Suppose that $\Gamma_{I}^{\prime}(R)=K_{\left|W_{1}\right|,\left|W_{2}\right|, \cdots,\left|W_{n}\right|}$ where $V\left(\Gamma_{I}^{\prime}(R)\right)=\bigcup_{i=1}^{n} W_{i}$ and $W_{j} \cap W_{k}=$ ϕ for $j \neq k$. Define a map $F: R \longrightarrow R / I$ by $F(x)=[x]$. Clearly F is a homomorphism from R onto R / I. It is easy to check that $\Gamma^{\prime}(R / I)=K_{\left|F\left(W_{1}\right)\right|,\left|F\left(W_{2}\right)\right|, \cdots,\left|F\left(W_{n}\right)\right|}$ is a complete n-partite graph.

Conversely, suppose that $\Gamma^{\prime}(R / I)=K_{\left|L_{1}\right|,\left|L_{2}\right|, \cdots,\left|L_{n}\right|}$ where $V\left(\Gamma^{\prime}(R / I)\right)=\bigcup_{i=1}^{n} L_{i}$ and $L_{j} \cap L_{k}=\phi$ for $j \neq k$. Define a map $S: R \longrightarrow R / I$ by $S(y)=[y]$. Clearly S is a homomorphism from R onto R / I. It is easy check that $\Gamma_{I}^{\prime}(R)=K_{\left|S^{-1}\left(L_{1}\right)\right|| | S^{-1}\left(L_{2}\right)\left|, \cdots,\left|S^{-1}\left(L_{n}\right)\right|\right.}$ is a complete n-partite graph.

Lemma 5.2. Let I be an ideal of R such that $R / I \cong D_{1} \times D_{2} \times \cdots \times D_{k}$, where $k \geqslant 2$ is a positive integer and D_{j} is an integral domain, for every $1 \leqslant j \leqslant k$. Then $\Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite.

Proof. Given $R / I \cong D_{1} \times D_{2} \times \cdots \times D_{k}$. Then by [6, Lemma 2.1], $\Gamma^{\prime}(R / I)$ is a complete $\left(2^{k}-2\right)$-partite and by Theorem $5.1 \Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite hence proved.

Proposition 5.3. Let I be a radical ideal of a commutative ring R with $\left|M_{i n}(R)\right|<\infty$ and suppose that P, Q are coprime, for every two distinct $P, Q \in \operatorname{Min}_{I}(R)$. Then the following statements are equivalent.
(i) $\left|\operatorname{Min}_{I}(R)\right|=k$.
(ii) $\Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite.

Proof. (i) \Rightarrow (ii) Suppose that $\left|\operatorname{Min}_{I}(R)\right|=k$ and define a map $F: R \longrightarrow R / I$ by $F(x)=[x]$. Clearly, $F\left(\left\{\operatorname{Min}_{I}(R)\right\}\right)=\operatorname{Min}(R / I)$ and $|\operatorname{Min}(R / I)|=k$. Then by [6] Corollory 2.2], $\Gamma^{\prime}(R / I)$ is a complete $\left(2^{k}-2\right)$-partite and by Theorem 5.1 $\Gamma_{I}^{\prime}(R)$ is a complete ($2^{k}-2$)-partite.
$(i i) \Rightarrow(i)$ Assume that $\Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite. Then by Theorem 5.1. $\Gamma^{\prime}(R / I)$ is a complete $\left(2^{k}-2\right)$-partite and by [6, Corollary 2.2], $|\operatorname{Min}(R / I)|=k$. Let us define a map $S: R \longrightarrow R / I$ by $S(x)=[x]$. Clearly, $S^{-1}(\{\operatorname{Min}(R / I\}))=\operatorname{Min}_{I}(R)$ and $\left|M i n_{I}(R)\right|=k$.

Proposition 5.4. Let I be an ideal in a ring R such that $R / I \cong D_{1} \times D_{2} \times \cdots \times D_{k}$, where $k \geqslant 2$ is a positive integer and D_{j} is an integral domain for each $j \in\{1,2, \cdots, n\}$. Then $\omega\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)=\omega\left(\Gamma_{I}^{\prime}(R)\right)=\left(2^{k}-2\right)$.
Proof. Given $R / I \cong D_{1} \times D_{2} \times \cdots \times D_{k}$ where $k \geqslant 2$ be a positive integer and D_{j} is an integral domain for each $j \in\{1,2, \cdots, k\}$. Then by [6, Lemma 2.1], $\Gamma^{\prime}(R / I)$ is a $\left(2^{k}-2\right)$ partite graph and by Lemma 5.2 $\Gamma_{I}^{\prime}(R)$ is a $\left(2^{k}-2\right)$-partite graph. Hence $\omega\left(\Gamma^{\prime}(R / I)\right)$ $=\chi\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)=\omega\left(\Gamma_{I}^{\prime}(R)\right)=\left(2^{k}-2\right)$.
Corollary 5.5. let I be a radical ideal in a commutative ring R with unity such that R / I is an Artinian ring. Then $\omega\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma_{I}^{\prime}(R)\right)=\chi\left(\Gamma^{\prime}(R / I)\right)=\omega\left(\Gamma_{I}^{\prime}(R)\right)=$ $2^{|M a x(R / I)|}-2$.

Corollary 5.6. let I be a radical ideal in an Artinian ring R. Then $\omega\left(\Gamma^{\prime}(R / I)\right)=\chi\left(\Gamma_{I}^{\prime}(R)\right)$ $=\chi\left(\Gamma^{\prime}(R / I)\right)=\omega\left(\Gamma_{I}^{\prime}(R)\right)=2^{|\operatorname{Max}(R / I)|}-2$.

In order to achieve the goal, we need a celebrated Kuratowski's theorem from Graph Theory [14, Theorem 6.2.2].

Theorem 5.7. (Kuratowski's Theorem) A Graph G is planar if and only if it contains no subdivision of either $K_{3,3}$ or K_{5}.

Proposition 5.8. Let I be a proper ideal of R. If $\Gamma_{I}^{\prime}(R)$ is a planar graph. Then $\Gamma^{\prime}(R / I)$ is also a planar graph but the converse need not be true in general.

Proof. Suppose that $\Gamma_{I}^{\prime}(R)$ is a planar graph. Since $\Gamma^{\prime}(R / I)$ is isomorphic to a sub graph of $\Gamma_{I}^{\prime}(R)$. By Theorem 5.7] $\Gamma^{\prime}(R / I)$ is a planar graph. For the converse with the help of Example [2.12, we note that in the Figure 2.4, $\Gamma_{I}^{\prime}(R)=K_{9}$ is not planar, but $R / I=\mathbb{Z}_{8}$ and $\Gamma^{\prime}(R / I)=K_{3}$ a planar graph.

Theorem 5.9. Let I be a radical ideal of a commutative ring R. Then the following statements are equivalent.
(i) $\Gamma_{I}^{\prime}(R)$ is planar.
(ii) $\left|\operatorname{Min}_{I}(R)\right|=2$ and one element of $\operatorname{Min}_{I}(R)$ has at most two elements different from I.

Proof. $(i) \Rightarrow$ (ii) Assume that $\Gamma_{I}^{\prime}(R)$ is planar. Suppose on the contrary that $\left|\operatorname{Min}_{I}(R)\right| \geq$ 3. Let us define a map $F: R \longrightarrow R / I$ by $F(x)=[x]$. Clearly, $F\left(\operatorname{Min}_{I}(R)\right)=\operatorname{Min}(R / I)$ and $|\operatorname{Min}(R / I)| \geq 3$. By [6] Theorem 3.4], $\Gamma^{\prime}(R / I)$ is not planar and by Lemma 5.8. $\Gamma_{I}^{\prime}(R)$ is not planar, a contradiction. Therefore, $\left|\operatorname{Min}_{I}(R)\right|=2$ and by Theorem 3.1.
$\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. Let $P_{I}, Q_{I} \in \operatorname{Min}_{I}(R)$ such that $\left|P_{I} \backslash I\right| \geq 3,\left|Q_{I} \backslash I\right| \geq 3$. Then $K_{3,3}$ is a subgraph of $\Gamma_{I}^{\prime}(R)$ which is not Planar, a contradiction. Thus one element of $\operatorname{Min}_{I}(R)$ has at most two elements different from I.
(ii) $\Rightarrow(i)$ Suppose that $\left|\operatorname{Min}_{I}(R)\right|=2$ and one element of $\operatorname{Min}_{I}(R)$ has at most two elements different from I. Then by Theorem 3.1 $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)$. Without loss of generality, we may assume that $P_{I}, Q_{I} \in \operatorname{Min}_{I}(R)$ such that $\left|P_{I} \backslash I\right|=m$, where $1 \leq m \leq 2$ and $\left|Q_{I} \backslash I\right|=n$. Thus $\Gamma_{I}^{\prime}(R)=K_{m, n}$, which is Planar.

Proposition 5.10. Let I be an ideal of a commutative ring R. Then $\Gamma_{I}^{\prime}(R)$ is not planar if one of the following statements hold.
(i) $|I| \geq 5$.
(ii) $\left|\beta^{*}(I)\right|>4$.
(iii) I is a radical ideal of R and $|I| \geq 3$.

Proof. Directly follows from Theorem 5.7
Remark 5.11. It can be easily observed that if R is a commutative ring with unity, then $|Z(R)|=2$ if and only if R is ring-isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$.

Theorem 5.12. Let I be a non-radical ideal of a commutative ring R such that $|I|=2$. Then $\Gamma_{I}^{\prime}(R)$ is planar if and only if one of the following statements hold.
(i) R / I is ring-isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$.
(ii) $\left(I: Z_{I}(R)\right)$ is a prime ideal of R and $\left|\left(I: Z_{I}(R)\right)\right|=4$.
(iii) $Z_{I}(R)=\beta(I)$ and $|\beta(I)|=6$.

Proof. Assume that $\Gamma_{I}^{\prime}(R)$ is planar. If $|\beta(I)|=\infty$, then by Lemma 2.4 $(i v), \Gamma_{I}^{\prime}(R)\left[\beta^{*}(I)\right.$] is not planar. Thus $\Gamma_{I}^{\prime}(R)$ is not planar and we find that $|\beta(I)|<\infty$. Since I is a proper additive subgroup of $\beta(I),|I|$ divides $|\beta(I)|$ and $|\beta(I)|=2 k$, where $k \in \mathbb{N} \backslash\{1\}$. Then the following cases arises:

Case(1) $k=2$, i.e., $|\beta(I)|=4$. Then $|\operatorname{Nil}(R / I)|=2$.
Subcase (i) If $\left|Z_{I}(R)\right|<\infty$, then $|Z(R / I)|<\infty$. If $|Z(R / I)|=2$, then by Remark 5.11, R / I is isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$. If $2 \neq|Z(R / I)|<\infty$, then by [6. Theorem 3.6(1)], R / I is isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or $\mathbb{Z}_{2} \times \frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$. If R / I is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, then there exists an isomorphism $g: R / I \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
Notice that there exist $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in R \backslash I$ such that $\left[\alpha_{1}\right]$, $\left[\alpha_{2}\right],\left[\alpha_{3}\right],\left[\alpha_{4}\right] \in$ R / I and $g\left(\left[\alpha_{1}\right]\right)=(0,1), g\left(\left[\alpha_{2}\right]\right)=(0,3), g\left(\left[\alpha_{3}\right]\right)=(1,0), g\left(\left[\alpha_{4}\right]\right)=(1,2)$. Since $\Gamma^{\prime}(R / I)\left[\left\{\left[\alpha_{1}\right],\left[\alpha_{2}\right]\left[\alpha_{3}\right]\left[\alpha_{4}\right]\right\}\right]=K_{2,2} \cong \Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)[\{(0,1),(0,3),(1,0),(1,2)\}]$, without loss of generality, we may assume that $\alpha_{1}, \alpha_{1}+i, \alpha_{2}, \alpha_{3}, \alpha_{3}+i, \alpha_{4} \in R \backslash I$, where $i \in I^{*}$ and by Theorem $4.1(i), \Gamma_{I}^{\prime}(R)\left[\left\{\alpha_{1}, \alpha_{1}+i, \alpha_{2}, \alpha_{3}, \alpha_{3}+i, \alpha_{4}\right\}\right]=K_{3,3}$, which is not planar, a contradiction. If R / I is isomorphic to $\mathbb{Z}_{2} \times \frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$, then there exists an isomorphism $f: R / I \rightarrow \mathbb{Z}_{2} \times \frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$. Notice that there exist $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4} \in R \backslash I$ such that $\left[\beta_{1}\right],\left[\beta_{2}\right],\left[\beta_{3}\right],\left[\beta_{4}\right] \in R / I$ and $g\left(\left[\beta_{1}\right]\right)=\left(0,\left(x^{2}\right)\right), g\left(\left[\beta_{2}\right]\right)=\left(0,1+\left(x^{2}\right)\right)$, $g\left(\left[\beta_{3}\right]\right)=\left(1,\left(x^{2}\right)\right), g\left(\left[\beta_{4}\right]\right)=\left(1, x+\left(x^{2}\right)\right)$. Since $\Gamma^{\prime}(R / I)\left[\left\{\left[\beta_{1}\right],\left[\beta_{2}\right]\left[\beta_{3}\right]\left[\beta_{4}\right]\right\}\right]=K_{2,2} \cong$ $\Gamma^{\prime}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)\left[\left\{\left(0,\left(x^{2}\right)\right),\left(0,1+\left(x^{2}\right)\right),\left(1,\left(x^{2}\right)\right),\left(1, x+\left(x^{2}\right)\right)\right\}\right]$, without loss of generality,
we may assume that $\beta_{1}, \beta_{1}+i, \beta_{2}, \beta_{3}, \beta_{3}+i, \beta_{4} \in R \backslash I$, where $i \in I^{*}$ and by Theorem $4.1(i), \Gamma_{I}^{\prime}(R)\left[\left\{\beta_{1}, \beta_{1}+i, \beta_{2}, \beta_{3}, \beta_{3}+i, \beta_{4}\right\}\right]=K_{3,3}$, which is not planar, again we get a contradiction.

Subcase $($ ii $)\left|Z_{I}(R)\right|=\infty$. Since $|I|=2<\infty,|Z(R / I)|=\infty$. Hence by [6] Theorem 3.6(2)], $\operatorname{Ann}(Z(R / I))$ is a prime ideal of R / I. This implies that $\left(I: Z_{I}(R)\right)$ is a prime ideal of R and by Corollary [3.5, $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{p} \vee \overline{K_{q}}$, where $p=\left|\beta^{*}(I)\right|, q=\left|Z_{I}(R) \backslash \beta(I)\right|=\infty$ and by Corollary 3.4 (iii), $\left(I: Z_{I}(R)\right)=\beta(I)$. Thus if we take $\left|\beta^{*}(I)\right|=\ell>4$, then $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{\ell} \vee \overline{K_{\infty}}$ and $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{\ell} \vee \overline{K_{\infty}}$ contain $K_{3,3}$ as a subgraph, and hence $\Gamma_{I}^{\prime}(R)$ is not planar. If $|\beta(I)|=4$, then $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{2} \vee \overline{K_{\infty}}$, which is planar. Hence $|\beta(I)|=\left|\left(I: Z_{I}(R)\right)\right|=4$.
$\operatorname{Case}(2) k=3$, i.e., $|\beta(I)|=6$. Then $|\operatorname{Nil}(R / I)|=3$ and by 6, Theorem 3.8], $\operatorname{Ann}(Z(R / I))$ is a prime ideal of R / I. This implies that $\left(I: Z_{I}(R)\right)$ is a prime ideal of R and by Corollary 3.5, $\Gamma_{I}^{\prime}(R)=\Gamma_{I}(R)=K_{p} \vee \overline{K_{q}}$, where $p=\left|\beta(I)^{*}\right|, q=\left|Z_{I}(R) \backslash \beta(I)\right|$. If $Z_{I}(R) \neq \beta(I)$, then $K_{5}=K_{4} \vee \overline{K_{1}}$ is a subgraph of $K_{4} \vee \overline{K_{q}}$, which is not planar. Hence $\beta(I)=Z_{I}(R)$ and by Lemma $2.4(i v), \Gamma_{I}^{\prime}(R)=K_{4}$, which is Planar.

Case(3) $k \geq 3$, i.e., $|\beta(I)| \geq 8$. Then $\left|\beta^{*}(I)\right|>4$ and by Proposition $5.10(i i), \Gamma_{I}^{\prime}(R)$ is not Planar. Hence $|\beta(I)| \leq 6$.

Converse part holds trivially.
Theorem 5.13. Let I be a non-radical ideal of a commutative ring R and $|I|=3$. Then $\Gamma_{I}^{\prime}(R)$ is planar if and only if R / I is ring-isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$.

Proof. Assume $\Gamma_{I}^{\prime}(R)$ is planar. Since $|I|=3,|\beta(I)|=6$, and $|N i l(R / I)|=2$. If $|Z(R / I)|>2$, then $K_{3,3}$ is a subgraph of $\Gamma_{I}^{\prime}(R)$. By Theorem 5.7] $\Gamma_{I}^{\prime}(R)$ is not planar, a contradiction. Hence $|Z(R / I)|=2$, then by Remark 5.11 R / I is isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$. Converse part holds trivially.

Proposition 5.14. Let I be a non-radical ideal of a commutative ring R and $|I|=4$. Then $\Gamma_{I}^{\prime}(R)$ is planar if and only if R / I is isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$.

Proof. Assume that $\Gamma_{I}(R)$ is planar. Since $|I|=4,|\beta(I)|=8$. If $\beta(I) \neq Z_{I}(R)$, then there exists $\alpha \in Z_{I}(R) \backslash \beta(I)$ and by Lemma $2.4(i v), \Gamma_{I}(R)\left[\{\alpha\} \cup \beta^{*}(I)\right]$ forms K_{5}, which is not planar. Hence $\beta(I)=Z_{I}(R),|Z(R / I)|=|N i l(R / I)|=2$, and by Remark 5.11 R / I is isomorphic to either \mathbb{Z}_{4} or $\frac{\mathbb{Z}_{2}(x)}{\left(x^{2}\right)}$. Converse part holds trivially.

Proposition 5.15. Let I be non-radical ideal of a commutative ring R. Then $\gamma\left(\Gamma_{I}^{\prime}(R)\right)$ $=\gamma_{s}\left(\Gamma_{I}^{\prime}(R)\right)=1$.

Proof. Let $x \in \beta^{*}(I)$. Then by Lemma 2.4, x is adjacent to every other vertex and $\operatorname{deg}(x) \geq \operatorname{deg}(y)$, for every y in $V\left(\Gamma_{I}^{\prime}(R)\right)$. Thus $\{x\}$ is a γ-set of $\Gamma_{I}^{\prime}(R)$ and $\gamma\left(\Gamma_{I}^{\prime}(R)\right)$ $=\gamma_{s}\left(\Gamma_{I}^{\prime}(R)\right)=1$.

Proposition 5.16. Let I be a radical ideal of a commutative ring R. Then $\gamma\left(\Gamma_{I}^{\prime}(R)\right)=2$ and $\Gamma_{I}^{\prime}(R)$ is excellent graph if one of the following statements hold.
(i) $R / I \approx D_{1} \times D_{2} \times \cdots \times D_{k}$ where $k \geqslant 2$ be a positive integer and D_{j} is an integral domain for each $j \in\{1,2, \cdots, k\}$.
(ii) $\left|\operatorname{Min}_{I}(R)\right|=k$.

Proof. (i) Clearly by Lemma $5.2 \Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite. Assume that $\Gamma_{I}^{\prime}(R)$ $=K_{\left|V_{1}\right|,\left|V_{2}\right|, \cdots,\left|V_{k}\right|}$. Clearly $\left\{x_{1}, x_{2}\right\}$ is a γ-set, where $x_{1} \in V_{1}$ and $x_{2} \in V_{2}$. Since $|I| \geq 2$, $\left|V_{1}\right| \geq 2$ and $\left|V_{2}\right| \geq 2$. Clearly $\left\{y_{1}, y_{2}\right\}$ is a γ-set, where $y_{1} \in V_{1} \backslash\left\{x_{1}\right\}$ and $y_{2} \in V_{2} \backslash\left\{x_{2}\right\}$. Therefore $\gamma\left(\Gamma_{I}^{\prime}(R)\right)=2$.
(ii) Clearly by Proposition 5.3 $\Gamma_{I}^{\prime}(R)$ is a complete $\left(2^{k}-2\right)$-partite any by part (i) $\gamma\left(\Gamma_{I}^{\prime}(R)\right)=2$.

6. Ordering on the Vertices of $\Gamma_{\mathscr{J}}^{\prime}(\mathscr{R})$

In this section, we study the ordering on the vertices of $\Gamma_{I}^{\prime}(R)$.
Definition 6.1. Given a graph H with vertices u and v, we define the relations \leq, \sim and \perp on H as follows.
(i) $u \leq v$ if every vertex adjacent to v is also adjacent to u.
(ii) $u \sim v$ if $u \leq v$ and $v \leq u$.
(iii) $u \perp v$ if u and v are adjacent and no other vertex of H is adjacent to both u and v.

Remark 6.2. Graphs $\Gamma_{I}^{\prime}(R)$ and $\Gamma^{\prime}(R / I)$ are simple, so any vertex of these graphs is never considered to be self adjacent. Hence, if $u \leq v$, then $u-v$ not an edge (otherwise v is self adjacent).

Proposition 6.3. Let I be an ideal of a commutative ring R. Let $u, v \in Z_{I}^{*}(R)$ such that $[u]$ and $[v]$ are nonconnected row of $\Gamma_{I}^{\prime}(R)$. Then $[u] \leq[v]$ in $\Gamma^{\prime}(R / I)$ if and only if $u \leq v$ in $\Gamma_{I}^{\prime}(R)$.

Proof. Assume $[u] \leq[v]$ in $\Gamma^{\prime}(R / I)$. Let $z \in Z_{I}^{*}(R)$ be adjacent to v. Since $[v]$ is nonconnected, $[v] \neq[z]$ (otherwise, $[v]$ is connected row). Thus, by Theorem4.1] $[z]$ is adjacent to $[v]$, since $[u] \leq[v]$ implies that $[z]$ is adjacent to $[u]$. Hence, By Theorem 4.1] u is adjacent to z.
Conversely, assume $u \leq v$ in $\Gamma_{I}^{\prime}(R)$. Let $[z] \in Z^{*}(R / I)$ be adjacent to $[v]$ in $\Gamma_{I}^{\prime}(R)$. Then, by Theorem $4.1 z$ is adjacent to v in $\Gamma_{I}^{\prime}(R)$. Since $u \leq v$ implies that z is adjacent to u in $\Gamma_{I}^{\prime}(R)$. Since $[u]$ is nonconnected row implies that $[z] \neq[u]$ and by Theorem 4.1] $[u]$ is adjacent to $[z]$ in $\Gamma^{\prime}(R / I)$.

Corollary 6.4. Let I be a proper ideal of a commutative ring R, and let $u, v \in Z_{I}^{*}(R)$ such that $[u]$ and $[v]$ are nonconnected row of $\Gamma_{I}^{\prime}(R)$. Then $[u] \sim[v]$ in $\Gamma^{\prime}(R / I)$ if and only if $u \sim v$ in $\Gamma_{I}^{\prime}(R)$.

Corollary 6.5. Let I be a proper ideal of a commutative ring R, and let $u, v \in Z_{I}^{*}(R)$ such that $u, v \in[z]$, where $[z]$ is a nonconnected row of $\Gamma_{I}^{\prime}(R)$. Then $u \sim v$ in $\Gamma_{I}^{\prime}(R)$.

Remark 6.6. In case of connected row, the conclusion of the above result fails, because in case of connected row we find a self adjacent vertices, as mention in the previous remark.

Proposition 6.7. Let I be an ideal of a commutative ring R such that $\left|V\left(\Gamma_{I}^{\prime}(R)\right)\right| \geqslant 3$. Suppose that $u, v \in Z_{I}^{*}(R)$ such that $[u] \neq[v]$ and both are nonconnected row of $\Gamma_{I}^{\prime}(R)$. Then $[u] \perp[v]$ in $\Gamma^{\prime}(R / I)$ if and only if $u \perp v$ in $\Gamma_{I}^{\prime}(R)$.

Proof. Assume $u \perp v$ in $\Gamma_{I}^{\prime}(R)$. Then $u-v$ is an edge of $\Gamma_{I}^{\prime}(R)$ and by Theorem 4.1, $[u]-[v]$ is an edge of $\Gamma_{I}^{\prime}(R)$. If $[z] \in Z^{*}(R / I)$ such that $[u]-[z]$ and $[v]-[z]$ are edges in $\Gamma^{\prime}(R / I)$, then by Theorem 4.1] $u-z$ and $v-z$ are edges in $\Gamma_{I}^{\prime}(R)$, a contradiction. Hence $[u] \perp[v]$ in $\Gamma^{\prime}(R / I)$.
Conversely suppose that $[u] \perp[v]$ in $\Gamma^{\prime}(R / I)$. Then $u-v$ is an edge in $\Gamma_{I}^{\prime}(R)$. Assume that $z \in Z_{I}^{*}(R)$ such that $u-z$ and $v-z$ are edges in $\Gamma_{I}^{\prime}(R)$. Then there exists $r \in R$ such that either $r u \notin I$ or $r z \notin I$ but $r u z \in I$. Similarly, there exists $s \in R$ such that either $s v \notin I$ or $s z \notin I$, but $s v z \in I$. Since $[u]$ and $[v]$ are non connected, $[u] \neq[z] \neq[v]$. Therefore, $[u]-[z]$ and $[v]-[z]$ are edges in $\Gamma^{\prime}(R / I)$, which contradicts, $[u] \perp[v]$, and hence $u \perp v$ in $\Gamma_{I}^{\prime}(R)$.

Acknowledgements. The authors are indebted to the learned referee for several useful suggestions which have improved immensely.

References

[1] D. F. Anderson and A. Badawi, On the zero-divisor graph of a commutative ring, Comm. Algebra, 36(8)(2008), 3073-3092.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
[3] M. Ashraf, M. Kumar and G. Mohammad, A subspace based subspace inclusion graph on vector space, Contrib. Discrete Math., 15(2)(2020), 73-83.
[4] M. Ashraf, M. Kumar and A. Jabeen, Subspace-based subspace sum graph on vector spaces, Soft Computing, 15(2021), 11429-11438.
[5] M. Bakhtyiari, M. J. Nikmehr and R. Nikandish, The extended zero-divisor graph of a commutative ring I, Hakkaido Mathematical Journal, 46(2017), 381-393.
[6] M. Bakhtyiari, M. J. Nikmehr and R. Nikandish, The extended zero-divisor graph of a commutative ring II, Hakkaido Mathematical Journal, 46(2017), 395-406.
[7] A. Badawi, On the annihilator graph of a commutative ring Comm. Algebra, 42(1)(2014), 108-121.
[8] I. Beck, Colouring of commutative rings, J. Algebra, 116(1988), 208-226.
[9] R. Diestel, Graph Theory, Springer-Verlag, New York(1997).
[10] J. A. Huckaba, Commutative ring with zero-divisor, Marcel Dekker, Inc., New York(1998).
[11] I. Kaplansky, Commutative rings rev. ed., Univ. of Chicago press, Chicago(1974).
[12] S. Kiani, H. R. Maimani and R. Nikandish, Some results on the domination number of a zero divisor graph, Canad. Math. Bull., 57(3)(2014), 573-578.
[13] S. P. Redmond, An ideal-based zero-divisor graph of commutative ring, Comm. Algebra, 31(9)(2003), 4425-4443.
[14] D. W. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River(2001).

[^0]: * Corresponding Author.

 Received June 10, 2019; revised April 13, 2020; accepted August 18, 2020.
 2010 Mathematics Subject Classification: Primary 13A15; Secondary 13B99, 05C20, 05 C 69.
 Key words and phrases: connected, diameter, girth, annihilator, prime ideal, Prime radical.

