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ZERO-DIVISOR GRAPHS OF MULTIPLICATION

MODULES

Sang Cheol Lee and Rezvan Varmazyar

Abstract. In this study, we investigate the concept of zero-divisor
graphs of multiplication modules over commutative rings as a nat-
ural generalization of zero-divisor graphs of commutative rings. In
particular, we study the zero-divisor graphs of the module Zn over
the ring Z of integers, where n is a positive integer greater than 1.

1. Introduction

Barnard first introduced the notion of multiplication modules in 1981
[6], and then E-Bast and Smith found various properties of multiplica-
tion modules to hold in 1988 [8]. On the other hand, Beck first intro-
duced the notion of a zero-divisor graph of a ring in 1988 [7] from the
view of colorings. Since then, others, such as in [2]-[4] have studied and
modified these graphs, whose vertices are the zero-divisors of R, and
found various properties to hold. Multiplication modules are natural
generalizations of commutative rings, and hence it is natural for us to
generalize zero-divisor graphs of commutative rings to those of multipli-
cation modules.

Throughout this paper, R will denote a commutative ring with iden-
tity and M will denote a nonzero unitary R-module. For a subset S of
M , we denote the set of all nonzero elements of S by S∗ as usual.

We will consider the product N ∗ K of submodules N and K of a
multiplication module M over a commutative ring R. Denote

{x ∈M | Rx ∗Ry = 0 for some nonzero element y of M}
by Z(RM). We define Z(R) = Z(RR). We associate a zero-divisor graph
Γ(RM) to a multiplication module M over a commutative ring R with
vertices being elements of Z(RM)∗. The two distinct vertices x, y are
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adjacent if and only if Rx ∗ Ry = 0 in M . This definition is extended
from that of [2]. We define Γ(R) = Γ(RR). It is known that Γ(R) is
connected with diamΓ(R) ≤ 3 and girthΓ(R) ≤ 4 (if Γ(R) contains a
cycle).

Section 2 deals with the zero-divisors of multiplication modules.

In Section 3, we compare the graph Γ0(RM) and the zero-divisor
graph Γ(RM) of a multiplication R-module M and primarily deal with
the basic properties of Γ0(RM).

If we know how to draw the zero-divisor graph Γ(RM) of a multi-
plication module over a commutative ring R, then it is easy to draw
the graph Γ0(RM). Therefore, to clarify and simplify our discussion, we
mainly deal with the zero-divisor graph Γ(RM) in Section 4. We show
in Theorem 4.3 that the diameter of Γ(RM)) is bounded above for ev-
ery multiplication module M . Moreover, when M1 and M2 are finitely
generated multiplication R-modules satisfying certain condition on R,
we calculate the diameter of Γ(R(M1 ⊕M2)) in Theorem 4.8.

Let n be a positive integer greater than 1. Section 5 deals with the
graph of Zn as a Z-module. To do so, we decompose the positive integer
n into prime numbers, say

n = pe11 pe22 · · · p
er
r ,

where p1, p2, · · · , pr are all distinct prime numbers and e1, e2, · · · , er
are all positive ingers. If e1, e2, · · · , er are all equal to 1, then the
positive integer n is called be square-free. Now, assume that n is not
square-free. Then by Theorem 5.1, the zero-divisor graph Γ(ZZn) is not
simple, which means that it has loops. We calculate the number of its
loops. We consider the relationship between the proper subgroups of
the group (Zn, +) and the zero-divisor graph Γ(ZZn).

2. Zero-Divisors of Multiplication Modules

In this section we define zero-divisors of multiplication modules. The
notion of a zero-divisor of a multiplication module is different from that
of a zero-divisor on a module.

An R-module M is called a multiplication module provided that for
each submodule N of M there exists an ideal I of R such that N = IM .
We say that I is a presentation ideal of N . Let N and K be submodules
of a multiplication R-module M . Then there exist ideals I and J of R
such that N = IM and K = JM . The product of N and K, denoted
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by N ∗K, is defined to be (IJ)M . By [1], the product of N and K is
independent of presentation ideals of N and K.

Definition 2.1. Let M be a multiplication R-module. An element
x of M is called a zero-divisor element of M if there exists a nonzero
element y of M such that Rx ∗Ry = 0 in M .

Remark 2.2. Let M be a multiplication R-module. The cyclic
submodule Rx of M should not try to be identified with x by defin-
ing the equivalence relation ∼ on M like this: x ∼ y if and only if
Rx = Ry, where x, y in M . If we identified Rx with x, we would have
self-contradictory statements. See Example 5.2.

Let M be a multiplication module. The zero element of M is a
zero-divisor because M is nonzero and the zero submodule of M can
be presented by the zero ideal of R. Let Z(RM) denote the set of all
zero-divisors of M .

Let M be an R-module. Recall that an element a of R is called a zero
divisor on M if there exists a nonzero element m in M such that am = 0
in M . Hence the zero-divisor graph Γ(RM) is the empty graph if and
only if M is a torsion-free module over an integral domain. The module
theoretic results on zero-divisors on M can be seen in [9, Section 2-2].
However, from now on, we do not think of zero-divisors on modules, but
rather zero-divisors of multiplication modules.

3. The Comparison of the Graphs Γ0(RM) and the Zero-
Divisor Graphs Γ(RM) of Multiplication R-Modules

We may consider a multiplication module M as a graph Γ0(RM)
whose vertices are elements of M such that two different elements x, y
of M are adjacent if and only if Rx ∗Ry = 0 in M . First of all, Γ(RM)
is a subgraph of Γ0(RM).

Lemma 3.1. Let M be a multiplication R-module. Then in Γ0(RM),
the zero element of M is adjacent to every element of M\{0}, but every
element of M\Z(RM) is adjacent only to the zero element of M .

Proof. For any element x of M\{0}, R0 ∗ Rx = 0. However, for any
two distinct elements x, y of M\Z(RM), Rx ∗Ry 6= 0. Hence the result
follows.

Example 3.2. Every ring is a multiplication module over itself. Fig-
ure 1 is the graph Γ0(ZZ8) of the Z-module Z8 and in particular this is an
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example of Lemma 3.1 since Z(ZZ8) = { 0, 2, 4, 6 }. Figure 2 is the zero-
divisor graph Γ(ZZ8) of the Z-module Z8 since Z(ZZ8)

∗ = { 2, 4, 6 }.
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Figure 1. Γ0(ZZ8) Figure 2. Γ(ZZ8)

Now, we can see that Γ(RM) better illustrates the structure of Z(RM)∗.
Hence in section 4 we consider and investigate the zero-divisor graphs
Γ(RM) of multiplication R-modules M . For each multiplication R-
module M , Γ0(RM) has the fundamental property as follows. Here
we denote the cardinality of a set S by |S| as usual.

Theorem 3.3. Let M be a multiplication R-module with |M | ≥ 3.
Let x, y and z be distinct vertices of Γ0(RM) such that x is adjacent to
y and y is not adjacent to z. Then there exists a nonzero element m in
Ry ∗Rz such that Rx ∗Rm = 0.

Proof. Since y is not adjacent to z, we see that Ry∗Rz 6= 0. However,
since x is adjacent to y, it follows from the independent property of
presentation ideals of the zero submodule and Rz that

Rx ∗ (Ry ∗Rz) = (Rx ∗Ry) ∗Rz = 0.

Take a nonzero element m in Ry ∗Rz. Then Rm ⊆ Ry ∗Rz and so

Rx ∗Rm ⊆ Rx ∗ (Ry ∗Rz) = 0.

Hence Rx ∗Rm = 0, as required.

We adopt the same notations as in [2] to restate them. Let Γ be a
graph. The number of edges in a path between two distinct vertices in
Γ is called the length of the path. For distinct vertices x and y of Γ, let
d(x, y) be the length of the shortest path from x to y (d(x, y) = ∞ if
there is no such path). Even though for certain distinct two vertices x
and y in Γ we have a path of length n between x and y, we can not say
that d(x, y) = n. Of course, if for certain distinct two vertices x and y
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in Γ we have a path of length n between x and y, then d(x, y) ≤ n. The
diameter of Γ is

diam(Γ) = sup { d(x, y) |x and y are distinct vertices of Γ}.
(diam(Γ) = −∞ if Γ = ∅).

Recall that a graph is connected if there is a path between any two
distinct vertices. Let M be a multiplication R-module. For any two
distinct vertices x, y of Γ0(RM), x is adjacent to the vertex 0 and the
vertex 0 is adjacent to y and so there is a path between x and y. Hence
Γ0(RM) is a connected graph with diam(Γ0(RM)) ≤ 2.

4. The Zero-Divisor Graphs of Multiplication Modules

If we know how to draw the zero-divisor graph Γ(RM) of a multipli-
cation module over a commutative ring R, then it is easy to draw the
graph Γ0(RM). Hence to clarify and simplify our discussion, we mainly
deal with the zero-divisor graph Γ(RM) in this section. Compare the
following result with Theorem 3.3.

Lemma 4.1. Let M be a multiplication R-module. Let x, y and z
be elements of M such that Rx ∗ Ry = 0 and Ry ∗ Rz 6= 0. Then the
following statements are true.

1. For every element m in (Ry ∗Rz)∗, Rx ∗Rm = 0.
2. If x 6= 0, then (Ry ∗Rz)∗ ⊆ Z(RM)∗.

Proof. (1) Let m ∈ (Ry ∗Rz)∗. Then

Rx ∗Rm ⊆ Rx ∗ (Ry ∗Rz) = (Rx ∗Ry) ∗Rz = 0 ∗Rz = 0,

and so Rx ∗Rm = 0.
(2) Let m ∈ (Ry ∗ Rz)∗. Then by (1), Rx ∗ Rm = 0. If x 6= 0, then

m ∈ Z(RM)∗. Hence the proof is completed.

If M is a multiplication module, then in Γ(RM), we can construct
an intermediate vertex between two given distinct vertices under certain
conditions. This construction is given below.

Lemma 4.2. Let M be a multiplication module. Let x, x1, y1 and
y be vertices of Γ(RM) such that x 6= x1, y 6= y1, and x1 6= y1. Assume
that x is not adjacent to y and x1 is not adjacent to y1. If x is adjacent
to x1 and y is adjacent to y1, then (Rx1 ∗ Ry1)

∗ ⊆ Z(RM)∗ and there
exists an element z in (Rx1 ∗Ry1)

∗ such that x is adjacent to z and z is
adjacent to y.
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Proof. Since x is adjacent to x1, x1 is not adjacent to y1, and x 6= 0,
it follows from Lemma 4.1(2) that (Rx1 ∗Ry1)

∗ ⊆ Z(RM)∗.

Now take an element z in (Rx1 ∗Ry1)
∗. Since x is adjacent to x1 and

x1 is not adjacent to y1, it follows from Lemma 4.1(1) that Rx∗Rz = 0.
Also, since y is adjacent to y1 and x1 is not adjacent to y1, it follows
from Lemma 4.1(1) again that Ry ∗ Rz = 0. Hence x is adjacent to z
and z is adjacent to y.

Hence in Γ(RM), we have connected the following two paths with
only one edge

•
x

•
x1

•
y1

•
y

to construct the following path of length 2 such that d(x, y) ≤ 2.

•
x

•
z

•
y

Let M be a multiplication R-module. Let n be a nonnegative integer.
For a submodule N of M , the n-th power of the submodule N is defined
to be

Nn =

 M if n = 0
N ∗N ∗ · · · ∗N︸ ︷︷ ︸

n times

if n ≥ 1

The following result is a generalization of [2, Theorem 2.3].

Theorem 4.3. Let M be a multiplication module. The zero-divisor
graph Γ(RM) is connected and the following statements are true.

1. If Z(RM)∗ = ∅, then diam(Γ(RM)) = −∞.
2. If Z(RM)∗ has only one element, then diam(Γ(RM)) = 0.
3. If |Z(RM)∗ | ≥ 2, then 1 ≤ diam(Γ(RM)) ≤ 3.

Proof. (1) This follows from the definition.

(2) Assume that Z(RM)∗ has only one element, say x0. Then Rx0 ∗
Rx0 = 0. Hence Γ(RM) has a loop on vertex x0 and diam(Γ(RM)) = 0.

(3) Assume that |Z(RM)∗ | ≥ 2. If, for any two distinct vertices of
Γ(RM), x is adjacent to y, then Γ(RM) is complete and diam(Γ(RM)) =
1.

Assume that x and y are distinct vertices of Γ(RM) with Rx∗Ry 6= 0.
Since x, y ∈ Z(RM)∗, there exist nonzero elements x1, y1 of M such that
Rx ∗Rx1 = 0 and Ry ∗Ry1 = 0. Further, x1, y1 ∈ Z(RM)∗.
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(i) Assume that x = x1 and y = y1. Take z ∈ (Rx ∗ Ry)∗. Suppose
that z = x. Then Rx = Rz ⊆ Rx ∗Ry and so

Rx ⊆ Rx ∗Ry ⊆ (Rx ∗Ry) ∗Ry = Rx ∗ (Ry)2 = Rx ∗ 0 = 0.

Hence x = 0. This contradicts to the fact that x ∈ Z(RM)∗. Thus
z 6= x. By a similar proof, we can show that z 6= y. Moreover,

Rx ∗Rz ⊆ Rx ∗ (Rx ∗Ry) = (Rx)2 ∗Ry = 0 ∗Ry = 0

and thus Rx∗Rz = 0. By a similar proof, we can show that Rz∗Ry = 0.
Therefore

•
x

•
z

•
y

is a path of length 2 between x and y, and d(x, y) = 2.
(ii) Assume that x = x1 and y 6= y1. Consider the following auxiliary

figure.

•
x

•
y1

•
y

Since x is not adjacent to y, we have x1 6= y1. If Rx1 ∗Ry1 = 0, then

•
x

•
y1

•
y

is a path of length 2 between x and y, and d(x, y) = 2. Assume that
Rx1 ∗Ry1 6= 0. Since y 6= 0, it follows from Lemma 4.1 that there exists
z1 in (Rx1 ∗Ry1)

∗ ⊆ Z(RM)∗ such that Rz1 ∗Ry = 0.
If Rx ∗Rz1 = 0, then

•
x

•
z1

•
y

is a path of length 2 between x and y, and d(x, y) = 2. If Rx ∗Rz1 6= 0,
it follows from Lemma 4.1 again that there exists z2 in (Rx ∗ Rz1)

∗ ⊆
Z(RM)∗ such that Rz2 ∗Ry = 0. Moreover,

Rx ∗Rz2 ⊆ Rx ∗ (Rx ∗Rz1) = (Rx)2 ∗Rz1 = 0 ∗Rz1 = 0
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and so Rx ∗Rz2 = 0. Hence

•
x

•
z2

•
y

is a path of length 2 between x and y, and d(x, y) = 2.
(iii) A similar argument holds if x 6= x1 and y = y1.
(iv) Assume that x 6= x1 and y 6= y1. If x1 = y1, then

•
x

•
x1=y1

•
y

is a path of length 2 between x and y, and d(x, y) = 2. Assume that
x1 6= y1. If x1 is adjacent to y1, then

•
x

•
x1

•
y1

•
y

is a path of length 3 between x and y. If x is adjacent to y1 or x1 is
adjacent to y, then d(x, y) = 2; otherwise d(x, y) = 3. Assume that
x1 is not adjacent to y1. Then by Lemma 4.2, there is a path between
x and y with d(x, y) = 2. Therefore the zero-divisor graph Γ(RM) is
connected and diam(Γ(RM)) = 1, 2, or 3.

For each positive integer n, the ring Zn is a multiplication Zn-module.
Hence by Theorem 4.3, diam(Γ(Zn)) ≤ 3. For example, the diameters
of Γ(Z2), Γ(Z4), Γ(Z9), Γ(Z6), and Γ(Z12) are −∞, 0, 1, 2 and 3, re-
spectively. To check that diam(Γ(Z12)) = 3, we give the zero-divisor
graph Γ(Z12) below.
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Corollary 4.4. Let M be a multiplication module. If |Z(RM)∗ | ≥ 2
and the zero-divisor graph Γ(RM) is not complete, then for any two
distinct vertices x, y of Γ(RM), d(x, y) = 2 or 3.

Let N be a submodule of a multiplication module M . N is a nilpotent
submodule of M if Nn = 0 for some positive integer n. If N is a nilpotent
submodule of M , then every submodule of N is also nilpotent.

Definition 4.5. Let M be a multiplication R-module. An element
x of M is called a nilpotent element of M if the cyclic submodule Rx of
M is nilpotent.
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For a multiplication module M , let N(RM) denote the set of all
nilpotent elements of M . Then clearly, the zero element of M is nilpo-
tent. N(RM) is a submodule of M . Now, assume that M is a dis-
tributive finitely generated module over a Noetherian ring R. Then
N(RM) is a finitely generated submodule of M . It follows from [6,
Proposition 7] that N(RM) is a multiplication module. Hence by the
last paragraph of section 3, diam(Γ0(N(RM))) ≤ 2, and by Theorem 4.3,
diam(Γ(N(RM))) ≤ 3.

Proposition 4.6. Let M be a nonzero multiplication R-module.
Then the following statements are true.

1. N(RM)∗ ⊆ Z(RM)∗.
2. Assume that x and y are any two distinct vertices of Γ(RM) such

that Rx ∗Ry 6= 0 and x ∈ N(RM)∗. Then d(x, y) = 2.

Proof. (1) Let x ∈ N(RM)∗. There exists a positive integer n such
that (Rx)n = 0. By the well-ordering property of integers, there exists
the least positive integer s such that (Rx)s = 0. Then (Rx)s−1 6= 0.
Take a nonzero element y in (Rx)s−1. Then

Rx ∗Ry ⊆ Rx ∗ (Rx)s−1 = (Rx)s = 0

and so Rx∗Ry = 0. Hence x ∈ Z(RM)∗. Therefore N(RM)∗ ⊆ Z(RM)∗.
(2) Let x, y be any two distinct vertices of Γ(RM). Assume that

Rx ∗ Ry 6= 0. Since y ∈ Z(RM)∗, there exists y1 ∈ M∗ such that
Ry∗Ry1 = 0. If Rx∗Ry1 = 0, then d(x, y) = 2. Assume that Rx∗Ry1 6=
0. Let x ∈ N(RM)∗. Consider the set S = {n ∈ N | (Rx)n ∗ Ry1 = 0 }.
Then S is a nonempty subset of N. By the well-ordering property of
integers, S has the least element, say t. Then (Rx)t ∗ Ry1 = 0, but
(Rx)t−1 ∗ Ry1 6= 0. Take z ∈ (Rx)t−1 ∗ Ry1. Then Rx ∗ Rz = 0 and
Rz ∗Ry = 0. Hence d(x, y) = 2. Therefore the proof is completed.

Lemma 4.7. Let M be the direct sum of two R-modules M1 and
M2. If M, M1 and M2 are multiplication R-modules, then for any two
elements (x1, x2) and (y1, y2) of M ,

R(x1, x2) ∗R(y1, y2) = (Rx1 ∗Ry1)⊕ (Rx2 ∗Ry2).

Proof. If M is a multiplication module, then there exist ideals I and
J of R such that R(x1, x2) = IM and R(y1, y2) = JM . Then

Rx1 ⊕Rx2 = R(x1, x2) = IM = IM1 ⊕ IM2,

Ry1 ⊕Ry2 = R(y1, y2) = JM = JM1 ⊕ JM2.
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So, Rx1 = IM1, Rx2 = IM2, Ry1 = JM1, and Ry2 = JM2. Hence

R(x1, x2) ∗R(y1, y2) = (IJ)M

= (IJ)M1 ⊕ (IJ)M2

= (Rx1 ∗Ry1)⊕ (Rx2 ∗Ry2).

Hence the proof is completed.

For a multiplication module M , let

P(RM) = {Rx ∗Ry |x, y ∈M }.

Theorem 4.8. Let M1, M2 be finitely generated multiplication R-
modules such that (0 :R M1) + (0 :R M2) = R. Then the following
statements are true.

1. If P(M1) = { 0 } and P(M2) = { 0 }, then Γ(M1⊕M2) is complete.
2. max{ diam(Γ(M1)), diam(Γ(M2)) } ≤ diam(Γ(M1 ⊕M2)) ≤ 3

Proof. Let M = M1 ⊕M2. Then by [8, Corollary 2.3], M is a multi-
plication module.

(1) Let (x1, x2) and (y1, y2) be any two distinct elements of Z(RM)∗.
Then by Lemma 4.7 and by our hypothesis,

R(x1, x2) ∗R(y1, y2) = (Rx1 ∗Ry1)⊕ (Rx2 ∗Ry2) = 0 ∗ 0 = 0.

Hence Γ(RM) is complete.
(2) Assume first that there is an edge between x1 and x2 in Γ(M1)

and an edge between y1 and y2 in Γ(M2). Then (x1, y1) and (x2, y2)
are two distinct vertices of Γ(RM). Moreover,

R(x1, y1) ∗R(x2, y2) = (Rx1 ∗Rx2)⊕ (Ry1 ∗Ry2) = 0 ∗ 0 = 0.

Hence there is an edge between (x1, y1) and (x2, y2) in Γ(RM).
Now, let m = diam(Γ(M1)) and n = diam(Γ(M2)). Then by Theo-

rem 4.3, we see that m, n ∈ {0, 1, 2, 3}. We may assume that m ≤ n.
Note that there are vertices x, x′ in Γ(M1) and vertices y, y′ in Γ(M2)
such that d(x, x′) = m and d(y, y′) = n. Then there exists a path

x = x0 − x1 − x2 − · · · − xm−1 − xm = x′

in Γ(M1) and a path

y = y0 − y1 − y2 − · · · − yn−1 − yn = y′

in Γ(M2). Then using the previous statement it is easy to check that

(x0, y0)− (x1, y1)− (x2, y2)− · · · − (xm, ym)− (0, ym+1)− · · · − (0, yn).
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is a path between (x0, y0) and (0, yn). If necessary, let xi = 0 for each
i ∈ {m + 1, · · · , n}. Then

(x0, y0)−(x1, y1)−(x2, y2)−· · ·−(xm, ym)−(xm+1, ym+1)−· · ·−(xn, yn).

is a path between (x0, y0) and (xn, yn). Hence d((x0, y0), (xn, yn)) ≤ n.
We show that d((x0, y0), (xn, yn)) = n. To do this, suppose that
d((x0, y0), (xn, yn)) < n. Then there are nonconsecutive integers s and
t in {0, 1, 2, · · · , n} such that two vertices (xs, ys)and (xt, yt) of Γ(RM)
can be drawn with an edge. Hence R(xs, ys)∗R(xt, yt) = 0. In particu-
lar, Rys∗Ryt = 0. Thus d(y0, yn) < n, and so n = d(y, y′) = d(y0, yn) <
n. This contradiction shows that d((x0, y0), (xn, yn)) = n. From this,
we can get that diam(Γ(RM)) ≥ n. Therefore, by Theorem 4.3,

max{ diam(Γ(M1)), diam(Γ(M2)) } ≤ diam(Γ(RM)) ≤ 3,

as required.

While discussing, Professor Maimani asked us whether there are M1, M2

satisfying the equation dim(M1 ⊕M2) = 3 in Theorem 4.8. We give an
example of this below.

Example 4.9. Let M1 = Z12, M2 = Z5. Then (9, 4) − (4, 0) −
(6, 0)− (2, 3) is a shortest path (of length 3) between (9, 4) and (2, 3).
Therefore, dim(M1 ⊕M2) = 3.

5. the zero-divisor graphs of Zn

Let p be a prime number. Then Zp2 and Zp⊕Zp are non-isomorphic
rings. The former is a multiplication module over the ring Z of integers.
However, the latter is not a multiplication module over the ring Z of
integers. On the other hand, if p and q are distinct prime numbers, then
Zpq and Zp ⊕ Zq are isomorphic rings and they are both multiplication
modules over the ring Z of integers. Hence, throughout this section, we
consider and investigate the Z-module Zn, where n ≥ 2. First of all,
Γ(Zn) = Γ(ZZn).

A graph Γ is said to be simple if Γ has no loop. For a multiplication
R-module M , the zero-divisor graph Γ(RM) is not necessarily simple.
For example, for a ring Z6, Γ(Z6) is simple. However, for a ring Z8,
Γ(Z8) is not simple because it has a loop on vertex 4.

Compare the following result with [5, Corollary 4.6].
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Theorem 5.1. Assume that n is a positive integer greater than 1
and n is not a prime number. Then the zero-divisor graph Γ(Zn) is
simple if and only if n is square-free.

Proof. Assume that the zero-divisor graph Γ(Zn) is simple. We show
that n is square-free. Suppose to the contrary that n is not square-
free. Then there exist positive integers u and v such that n = u2v. Let
h = uv. Then h ∈ Zn. In Zn, h2 = 0. Hence Γ(Zn) has a loop on vertex
h. This contradiction shows that n is square-free.

Now, assume that n is square-free. Then n can be factored as follows:

n = p1p2 · · · pr,

where p1, p2, · · · , pr are distinct prime numbers. Then Γ(Zn) is simple.
For otherwise, it has a loop on a vertex, say x. Then x2 = 0 in Zn. So,
n |x2 in Z. This implies that each pi is a divisor of x2 and hence a divisor
of x. Since p1, p2, · · · , pr are distinct, we can see that their product
p1p2 · · · pr is a divisor of x. Hence x = 0 in Zn, so that 0 = x ∈ Z(Zn)∗.
This is a contradiction.

For example, the zero-divisor graph Γ(Zn), where n is of the form
n = 2s, s ≥ 2, is not simple. There are at least 2k − 1 loops in the the
zero-divisor graph Γ(Z22k), where k ≥ 1, since there is a loop on each of
its vertices m · 2k, 1 ≤ m ≤ 2k − 1. Also, there are at least 2k − 1 loops
in the zero-divisor graph Γ(Z22k+1), where k ≥ 1, since there is a loop
on each of its vertices m · 2k+1, 1 ≤ m ≤ 2k − 1.

Now let us see what happens if we define the equivalence relation ∼
on M as in Remark 2.2.

Example 5.2. Consider the ring Z6. The zero-divisor graph of the
ring Z6 is 2 − 3 − 4. According to our construction, the zero-divisor
graph of the module Z6 over itself is 2 − 3 − 4. There will be no
problem with our construction. However, according to the construction
defining the equivalence relation on M as in Remark 2.2, the zero-divisor
graph of the module Z6 over itself is [2](= [4]) − [3]. The graphs are
different. In other words, if we identify Rx with x, where x ∈ M , we
never reach our goal saying that the zero-divisor graph of a ring R is
identical to the zero-divisor graph of the multiplication module R over
itself.

Lemma 5.3. The class of all the proper subgroups of the group
(Zn, +) is equal to {Znx | x ∈ Z(Zn)}, where n ≥ 2.



Zero-Divisor Graphs of Multiplication Modules 583

Consider the ring Zn, where n ≥ 2. The ring can be viewed as a
module over the ring Z of integers since the group (Zn, +) is Abelian.
Hence Lemma 5.3 can be recast as follows: the class P of all the proper
submodules of the Z-module Zn is equal to {Znx | x ∈ Z(ZZn)}. Hence
P can be obtained from the set Z(ZZn) of vertices of the the zero-divisor
graph Γ(ZZn).

Corollary 5.4. The lattice diagram of the group (Zn, +) is obtained
from the zero-divisor graph of the Z-module Zn, where n ≥ 2.

This corollary suggests us that we can draw Γ(ZZn) by the lattice
diagram of the group (Zn, +) so that we can get the graph. The example
of this is given below. Compare Example 5.5 with [10, Example 1.11].

Example 5.5.

•
2

•
3

•
4

•
6

•
8

•
9

•
10

•
4Z12=8Z12

•
2Z12=10Z12

•
Z12=5Z12=7Z12=11Z12

•
{0}

•
6Z12

•
3Z12=9Z12

The lattice diagram

of the group (Z12, +)

Γ(ZZ12)

From the right side diagram, first delete the points Z12 and {0} and all
of the lines. And then introduce the rectangular coordinate system by
taking the point 6Z12 as the original point of the system. Now rotate
all the remaining points about the y-axis through 180◦ and get all the
points on the left side graph which are the non-zero zero-divisors of the
Z-module Z12. Finally, draw the lines between x and y if Zx ∗ Zy = 0,
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where x, y in Z12. The resulting graph Γ(ZZ12) is essentially the same
as in the graph just prior to Corollary 4.4.
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