DOI QR코드

DOI QR Code

ANNIHILATING CONTENT IN POLYNOMIAL AND POWER SERIES RINGS

  • Abuosba, Emad (Department of Mathematics School of Science The University of Jordan) ;
  • Ghanem, Manal (Department of Mathematics School of Science The University of Jordan)
  • Received : 2018.10.19
  • Accepted : 2018.11.21
  • Published : 2019.09.01

Abstract

Let R be a commutative ring with unity. If f(x) is a zero-divisor polynomial such that $f(x)=c_f f_1(x)$ with $c_f{\in}R$ and $f_1(x)$ is not zero-divisor, then $c_f$ is called an annihilating content for f(x). In this case $Ann(f)=Ann(c_f )$. We defined EM-rings to be rings with every zero-divisor polynomial having annihilating content. We showed that the class of EM-rings includes integral domains, principal ideal rings, and PP-rings, while it is included in Armendariz rings, and rings having a.c. condition. Some properties of EM-rings are studied and the zero-divisor graphs ${\Gamma}(R)$ and ${\Gamma}(R[x])$ are related if R was an EM-ring. Some properties of annihilating contents for polynomials are extended to formal power series rings.

Keywords

Acknowledgement

Supported by : The University of Jordan

References

  1. E. Abu Osba and O. Alkam, When zero-divisor graphs are divisor graphs, Turkish J. Math. 41 (2017), no. 4, 797-807. https://doi.org/10.3906/mat-1601-102
  2. D. D. Anderson, D. F. Anderson, and R. Markanda, The rings R(X) and RhXi, J. Algebra 95 (1985), no. 1, 96-115. https://doi.org/10.1016/0021-8693(85)90096-1
  3. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  4. D. D. Anderson and S. Chun, Irreducible elements in commutative rings with zero-divisors, Houston J. Math. 37 (2011), no. 3, 741-744.
  5. D. D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26 (1996), no. 2, 439-480. https://doi.org/10.1216/rmjm/1181072068
  6. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  7. M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050. https://doi.org/10.1081/AGB-200063357
  8. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  9. V. Camillo and W. K. Nicholson, Quasi-morphic rings, J. Algebra Appl. 6 (2007), no. 5, 789-799. https://doi.org/10.1142/S0219498807002454
  10. S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960), 167-170. http://projecteuclid.org/euclid.nmj/1118800460 https://doi.org/10.1017/S0027763000002129
  11. D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. https://doi.org/10.2307/2036469
  12. C. R. Fletcher, Unique factorization rings, Proc. Cambridge Philos. Soc. 65 (1969), 579-583. https://doi.org/10.1017/S0305004100003352
  13. A. Haouaoui and A. Benhissi, Zero-divisors and zero-divisor graphs of power series rings, Ric. Mat. 65 (2016), no. 1, 1-13. https://doi.org/10.1007/s11587-015-0235-y
  14. M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.2307/1994260
  15. I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
  16. T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193. https://doi.org/10.1016/j.jalgebra.2006.01.019
  17. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  18. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675
  19. H. Zhu and N. Ding, Generalized morphic rings and their applications, Comm. Algebra 35 (2007), no. 9, 2820-2837. https://doi.org/10.1080/00927870701354017