• Title/Summary/Keyword: z)

Search Result 11,609, Processing Time 0.038 seconds

STRONG DIFFERENTIAL SUBORDINATION AND APPLICATIONS TO UNIVALENCY CONDITIONS

  • Antonino Jose- A.
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.311-322
    • /
    • 2006
  • For the Briot-Bouquet differential equations of the form given in [1] $${{\mu}(z)+\frac {z{\mu}'(z)}{z\frac {f'(z)}{f(z)}\[\alpha{\mu}(z)+\beta]}=g(z)$$ we can reduce them to $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$ where $$v(z)=\alpha{\mu}(z)+\beta,\;h(z)={\alpha}g(z)+\beta\;and\;F(z)=f(z)/f'(z)$$. In this paper we are going to give conditions in order that if u and v satisfy, respectively, the equations (1) $${{\mu}(z)+F(z)\frac {v'(z)}{v(z)}=h(z)$$, $${{\mu}(z)+G(z)\frac {v'(z)}{v(z)}=g(z)$$ with certain conditions on the functions F and G applying the concept of strong subordination $g\;\prec\;\prec\;h$ given in [2] by the author, implies that $v\;\prec\;{\mu},\;where\;\prec$ indicates subordination.

SR-ADDITIVE CODES

  • Mahmoudi, Saadoun;Samei, Karim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1235-1255
    • /
    • 2019
  • In this paper, we introduce SR-additive codes as a generalization of the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes, where S is an R-algebra and an SR-additive code is an R-submodule of $S^{\alpha}{\times}R^{\beta}$. In particular, the definitions of bilinear forms, weight functions and Gray maps on the classes of ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$ and ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$-additive codes are generalized to SR-additive codes. Also the singleton bound for SR-additive codes and some results on one weight SR-additive codes are given. Among other important results, we obtain the structure of SR-additive cyclic codes. As some results of the theory, the structure of cyclic ${\mathbb{Z}}_2{\mathbb{Z}}_4$, ${\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}$, ${\mathbb{Z}}_2{\mathbb{Z}}_2[u]$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+u^2{\mathbb{Z}}_2)$, $({\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$ and $({\mathbb{Z}}_2+u{\mathbb{Z}}_2)({\mathbb{Z}}_2+u{\mathbb{Z}}_2+v{\mathbb{Z}}_2)$-additive codes are presented.

FACTORIZATION IN KREIN SPACES

  • Yang, Mee-Hyea
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Let A(z), W(z) and C(z) be power series with operator coefficients such that W(z) = A(z)C(z). Let D(A) and D(C) be the state spaces of unitary linear systems whose transfer functions are A(z) and C(z) respectively. Then there exists a Krein space D which is the state space of unitary linear system with transfer function W(z). And the element of D is of the form (f(z) + A(z)h(z), k(z) + C*(z)g(z)) where (f(z),g(z)) is in D(A) and (h(z),k(z)) is in D(C).

  • PDF

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.

THE OVERLAPPING SPACE OF A CANONICAL LINEAR SYSTEM

  • Yang, Meehyea
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.461-468
    • /
    • 2004
  • Let W(z) be a power series with operator coefficients such that multiplication by W(z) is contractive in C(z). The overlapping space $L(\varphi)$ of H(W) in C(z) is a Herglotz space with Herglotz function $\varphi(z)$ which satisfies $\varphi(z)+\varphi^*(z^{-1})=2[1-W^{*}(z^{-1})W(z)]$. The identity ${}_{L(\varphi)}={-}_{H(W)}$ holds for every f(z) in $L(\varphi)$ and for every vector c.

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

SUFFICIENT CONDITIONS FOR STARLIKENESS

  • RAVICHANDRAN, V.;SHARMA, KANIKA
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.727-749
    • /
    • 2015
  • We obtain the conditions on ${\beta}$ so that $1+{\beta}zp^{\prime}(z){\prec}1+4z/3+2z^2/3$ implies p(z) ${\prec}$ (2+z)/(2-z), $1+(1-{\alpha})z$, $(1+(1-2{\alpha})z)/(1-z)$, ($0{\leq}{\alpha}$<1), exp(z) or ${\sqrt{1+z}}$. Similar results are obtained by considering the expressions $1+{\beta}zp^{\prime}(z)/p(z)$, $1+{\beta}zp^{\prime}(z)/p^2(z)$ and $p(z)+{\beta}zp^{\prime}(z)/p(z)$. These results are applied to obtain sufficient conditions for normalized analytic function f to belong to various subclasses of starlike functions, or to satisfy the condition ${\mid}log(zf^{\prime}(z)/f(z)){\mid}$ < 1 or ${\mid}(zf^{\prime}(z)/f(z))^2-1{\mid}$ < 1 or zf'(z)/f(z) lying in the region bounded by the cardioid $(9x^2+9y^2-18x+5)^2-16(9x^2+9y^2-6x+1)=0$.

ON THE EXISTENCE OF SOLUTIONS OF FERMAT-TYPE DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Chen, Jun-Fan;Lin, Shu-Qing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.983-1002
    • /
    • 2021
  • We investigate the non-existence of finite order transcendental entire solutions of Fermat-type differential-difference equations [f(z)f'(z)]n + P2(z)fm(z + 𝜂) = Q(z) and [f(z)f'(z)]n + P(z)[∆𝜂f(z)]m = Q(z), where P(z) and Q(z) are non-zero polynomials, m and n are positive integers, and 𝜂 ∈ ℂ \ {0}. In addition, we discuss transcendental entire solutions of finite order of the following Fermat-type differential-difference equation P2(z) [f(k)(z)]2 + [αf(z + 𝜂) - 𝛽f(z)]2 = er(z), where $P(z){\not\equiv}0$ is a polynomial, r(z) is a non-constant polynomial, α ≠ 0 and 𝛽 are constants, k is a positive integer, and 𝜂 ∈ ℂ \ {0}. Our results generalize some previous results.

STABILITY AND SOLUTION OF TWO FUNCTIONAL EQUATIONS IN UNITAL ALGEBRAS

  • Yamin Sayyari;Mehdi Dehghanian;Choonkil Park
    • Korean Journal of Mathematics
    • /
    • v.31 no.3
    • /
    • pp.363-372
    • /
    • 2023
  • In this paper, we consider two functional equations: (1) h(𝓕(x, y, z) + 2x + y + z) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) + 2x + y) + h(xy) + yh(x + z) + 2h(z), (2) h(𝓕(x, y, z) - y + z + 2e) + 2h(x + y) + h(xy + z) + yh(x) + yh(z) = h(𝓕(x, y, z) - y + 2e) + 2h(x + y + z) + h(xy) + yh(x + z), without any regularity assumption for all x, y, z in a unital algebra A, where 𝓕 : A3 → A is defined by 𝓕(x, y, z) := h(x + y + z) - h(x + y) - h(z) for all x, y, z ∈ A. Also, we find general solutions of these equations in unital algebras. Finally, we prove the Hyers-Ulam stability of (1) and (2) in unital Banach algebras.

ON DELAY DIFFERENTIAL EQUATIONS WITH MEROMORPHIC SOLUTIONS OF HYPER-ORDER LESS THAN ONE

  • Risto Korhonen;Yan Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.229-246
    • /
    • 2024
  • We consider the delay differential equations $$b(z)w(z+1)+c(z)w(z-1)+a(z)\frac{w'(z)}{w^k(z)}=\frac{P(z, w(z))}{Q(z, w(z))}$$, where k ∈ {1, 2}, a(z), b(z) ≢ 0, c(z) ≢ 0 are rational functions, and P(z, w(z)) and Q(z, w(z)) are polynomials in w(z) with rational coefficients satisfying certain natural conditions regarding their roots. It is shown that if this equation has a non-rational meromorphic solution w with hyper-order ρ2(w) < 1, then either degw(P) = degw(Q) + 1 ≤ 3 or max{degw(P), degw(Q)} ≤ 1. In addition, it is shown that in the case max{degw(P), degw(Q)} = 0 the equations above can have such a solution, with an additional zero density requirement, only if the coefficients of the equation satisfy certain strict conditions.