Acknowledgement
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.
References
- J. Clunie, On integral and meromorphic functions, J. Lond. Math. Soc., 37(1962), 17-27. https://doi.org/10.1112/jlms/s1-37.1.17
- Y. M. Chiang and S. J. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 361(7)(2009), 3767-3791. https://doi.org/10.1090/S0002-9947-09-04663-7
- X. Dong and K. Liu, Entire function sharing a small function with its mixed-operators, Georgian Math. J., 26(2019), 47-62. https://doi.org/10.1515/gmj-2017-0024
- X. M. Gui, H. Y. Xu and H. Wang, uniqueness of meromorphic functions sharing small functions in the k-punctured complex plane, AIMS Mathematics, 5(6)(2020), 7438-7457. https://doi.org/10.3934/math.2020476
- R. G. Halburd and R. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31(2006), 463-478.
- R. G. Halburd and R. J. Korhonen, Finite order solutions and the discrete Painleve equations, Proc. London Math. Soc., 94(2)(2007), 443-474. https://doi.org/10.1112/plms/pdl012
- W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- K. Ishizaki and N. Yanagihara, Wiman-Valiron method for difference equations, Nagoya Math. J., 175(2004), 75-102. https://doi.org/10.1017/S0027763000008916
- I. Laine and C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc., 76(2)(2007), 556-566. https://doi.org/10.1112/jlms/jdm073
- X. M. Li and H. X. Yi, Entire functions sharing an entire function of smaller order with their difference operators, Acta Mathematical Sinica, English Series., 30(3)(2014), 481-498. https://doi.org/10.1007/s10114-014-2042-x
- L. W. Liao and C. C. Yang, On the growth and factorization of entire solutions of algebraic differential equations, Ann. Acad. Sci. Fenn. Math., 25(2000), 73-84.
- A. Z. Mohono and V. D. Mohono, Estimates of the Nevanlinna characteristics of certain classes of meromorphic functions, and their applications to differential equations, Sibirsk. Mat. Zh., 15(1974) 1305-22.
- J. Malmquist, Sur les fonctions a un nombre fini des branches definies par les equations differenielles du premier ordre, Acta Math. 36(1913), 297-343. https://doi.org/10.1007/BF02422385
- N. Steinmetz, Ein Malmquistscher Satz fur algebraische Differentialgleichungen erster Ordnung, J. Reine Angew. Math., 316(1980), 44-53.
- H. Wittich, Einige Eigenschaften der Losungen von w = a(z) +b(z)w +c(z)w2, Arch. Math., 5(1954), 226-232. https://doi.org/10.1007/BF01899342
- C. C. Yang and H. X. Yi, Uniqueness of Meromorphic Functions, Kluwer, Dordrecht, 2003.