• Title/Summary/Keyword: yield prediction

Search Result 554, Processing Time 0.03 seconds

Boundary Line Analysis of Rice Yield Responses to Meteorological Conditions for Yield Prediction II. Verification of Yield Prediction Model (최대경계선을 이용한 벼 수량의 기상반응분석과 수량 예측 II. 수량예측모형 검증)

  • 김창국;한원식;이변우
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.3
    • /
    • pp.164-168
    • /
    • 2002
  • Yield prediction model of rice based on the boundary line analysis of the relationships between rice yield and meteorological conditions during rice growing period was reported in the previous report (Kim et al, 2001). Using the 15-year data of the 20 locations used for the model formulation and of the 12 locations not used, the model was tested for its predictability of location to location, year to year, and variety to variety variation of rice yield. The model predicted reliably the mean yield differences among locations, the yearly yield variation in each location, and the yield variation by variety. However, the model showed relatively lower predictability for the years of cool weather injury especially in mountainous locations. In conclusion, the model using boundary line analysis could be used to predict the yield responses to meteorological conditions during rice growth period and the locational, yearly, and varietal variations of rice yield. And the predictability of the present yield prediction model might be improved by including the boundary line analysis for the other factors such as soil characteristics, fertilization levels, etc.

Sediments Yield Estimation of Gangwon Mountain Region in Korea (강원도 산간지역의 토사유출량 산정)

  • Kwon, Hyuk-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • In this study, calculation results of sediments yield prediction models were compared with the amount of dredging data for the Inje, Gangwon mountain region of Korea. MSDPM and LADMP were used as a sediments prediction model which was calibrated and modified to calculate the sediments yield of Korean mountain region. Both sediments yield prediction models were modified by using Threshold Maximum Rainfall Intensity and Total Minimum Rainfall Intensity and correction coefficient. After comparing with the amount of dredging, it was found that results of MSDPM is more accurate than the results of LADMP. Difference of results of MSDPM and the amount of dredging is 27.6% and difference of results of LADMP and the amount of dredging is 50.6%. Both sediments yield prediction models which were calibrated in this study can be used to calculate the sediments yield for the Korean mountain region.

Weibull Diameter Distribution Yield Prediction System for Loblolly Pine Plantations (테다소나무 조림지(造林地)에 대한 Weibull 직경분포(直經分布) 수확예측(收穫豫測) 시스템에 관(關)한 연구(硏究))

  • Lee, Young-Jin;Hong, Sung-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.176-183
    • /
    • 2001
  • Loblolly pine (Pinus taeda L.) is the most economically important timber producing species in the southern United States. Much attention has been given to predicting diameter distributions for the solution of multiple-product yield estimates. The three-parameter Weibull diameter distribution yield prediction systems were developed for loblolly pine plantations. A parameter recovery procedure for the Weibull distribution function based on four percentile equations was applied to develop diameter distribution yield prediction models. Four percentiles (0th, 25th, 50th, 95th) of the cumulative diameter distribution were predicted as a function of quadratic mean diameter. Individual tree height prediction equations were developed for the calculation of yields by diameter class. By using individual tree content prediction equations, expected yield by diameter class can be computed. To reduce rounding-off errors, the Weibull cumulative upper bound limit difference procedure applied in this study shows slightly better results compared with upper and lower bound procedure applied in the past studies. To evaluate this system, the predicted diameter distributions were tested against the observed diameter distributions using the Kolmogorov-Smirnov two sample test at the ${\alpha}$=0.05 level to check if any significant differences existed. Statistically, no significant differences were detected based on the data from 516 evaluation data sets. This diameter distribution yield prediction system will be useful in loblolly pine stand structure modeling, in updating forest inventories, and in evaluating investment opportunities.

  • PDF

Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys (평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향)

  • ;F. Barlat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

Rice Yield Prediction Based on the Soil Chemical Properties Using Neural Network Model (인공신경망 모형을 이용하여 토양 화학성으로 벼 수확량 예측)

  • Sung J. H.;Lee D. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.360-365
    • /
    • 2005
  • Precision agriculture attempts to improve cropping efficiency by variable application of crop treatments such as fertilizers and pesticides, within field on a point-by-point basis. Therefore, a more complete understanding of the relationships between yield and soil properties is of critical importance in precision agriculture. In this study, the functional relationships between measured soil properties and rice yield were investigated. A supervised back-propagation neural network model was employed to relate soil chemical properties and rice yields on a point-by point basis, within individual site-years. As a results, a positive correlation was found between practical yields and predicted yields in 1999, 2000, 2001, and 2002 are 0.916, 0.879, 0.800 and 0.789, respectively. The results showed that significant overfitting for yields with only the soil chemical properties occurred so that more of environmental factors, such as climatological data, variety, cultivation method etc., would be required to predict the yield more accurately.

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflectance Analyzer(II) - Prediction of Brown and Milled Rice Protein Content and Brown Rice Yield from undried Paddy - (근적외선 분석계를 이용한 국내산 쌀의 성분 예측모델 개발(II) -생벼를 이용한 현미.백미의 단백질 함량과 현미수율 예측-)

  • 한충수;연광석;고과이랑
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.253-258
    • /
    • 1998
  • The part I was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Infrared(NIR) Reflectance analyzer. The purpose of this study(part II) is to measure fundamental data required for the prediction of rice quality, and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undried paddy powder by using Near Infrared(NIR) Reflectance analyzer. The results of this study were summarized as follows : The predicted values of protein contents obtained from the undried paddy powder were well correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to the lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.

  • PDF

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflection Analyzer (II)-Prediction of Brown and Milled Rice Protein Content and Brown Rice Yield from Undried Paddy (근적외선 분석계를 이용한 국내산 쌀의 성분예측모델 개발(II)-생벼를 이용한 현미.백미의 단백질 함량과 현미수율 예측)

  • ;;J.R. Warashina
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1998.06b
    • /
    • pp.171-177
    • /
    • 1998
  • The part Ⅰ was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Unfrared (NIR) Reflectance analyzer. The purpose of this study(part Ⅱ) is to measure fundamental data required for the prediction of rice quality , and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undreid paddy powder by using Near Infrared (NIR) Reflectance analyzer. The results of this study were summarized as follows . The predicted values of protein contents obtained from the undried paddy powder were will correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to be lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.

  • PDF

Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network (적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발)

  • Choi, Mun-Kyu;Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

A Yields Prediction in the Semiconductor Manufacturing Process Using Stepwise Support Vector Machine (SSVM(Stepwise-Support Vector Machine)을 이용한 반도체 수율 예측)

  • An, Dae-Wong;Ko, Hyo-Heon;Kim, Ji-Hyun;Baek, Jun-Geol;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.252-262
    • /
    • 2009
  • It is crucial to prevent low yields in the semiconductor industry. Since many factors affect variation in yield and they are deeply related, preventing low yield is difficult. There have been substantial researches in the field of yield prediction. Many researchers had used the statistical methods. Many studies have shown that artificial neural network (ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance some problems such as over-fitting and poor explanatory power arise. In order to overcome these limitations, a relatively new machine learning technique, support vector machine (SVM), is introduced to classify the yield. SVM is simple enough to be analyzed mathematically, and it leads to high performances in practical applications. This study presents a new efficient classification methodology, Stepwise-SVM (SSVM), for detecting high and low yields. SSVM is step-by-step adjustment of parameters to be precisely the classification for actual high and low yield lot. The objective of this paper is to examine the feasibility of SVM and SSVM in the yield classification. The experimental results show that SVM and SSVM provides a promising alternative to yield classification for the field data.

Assessment of Contribution of Climate and Soil Factors on Alfalfa Yield by Yield Prediction Model (수량예측모델을 통한 Alfalfa 수량에 영향을 미치는 기후요인 및 토양요인의 기여도 평가)

  • Kim, Ji Yung;Kim, Moon Ju;Jo, Hyun Wook;Lee, Bae Hun;Jo, Mu Hwan;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2021
  • The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.