• Title/Summary/Keyword: wound-treatment

Search Result 1,095, Processing Time 0.028 seconds

The Wound Healing Potential of Lignosus rhinocerus and Other Ethno-myco Wound Healing Agents

  • Hui-Yeng Y. Yap;Mohammad Farhan Ariffeen Rosli;Soon-Hao Tan;Boon-Hong Kong;Shin-Yee Fung
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/-products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.

Sericin and 4-hexylresorcinol combination ointment accelerates wound healing in the diabetic burn wound model

  • Kang, Yei-Jin;Jo, You-Young;Kweon, HaeYong;Kim, Seong-Gon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Sericin has been used for the treatment of burn wound. The purpose of this study was to compare the wound healing between sericin plus 4-hexylresorcinol (4HR) ointment (SE+4HR) and base only ointment. Total 12 mice were included in this study. SE+4HR group showed significantly smaller wound size than base only group at 3 wk (P<0.05). Surface temperature was higher in SE+4HR group. In conclusion, SE+4HR group showed better wound healing than base only group.

Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice

  • Jin, Haiming;Zhang, Zengjie;Wang, Chengui;Tang, Qian;Wang, Jianle;Bai, Xueqin;Wang, Qingqing;Nisar, Majid;Tian, Naifeng;Wang, Quan;Mao, Cong;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.13.1-13.15
    • /
    • 2018
  • Wound healing is delayed in diabetic patients. Increased apoptosis and endothelial progenitor cell (EPC) dysfunction are implicated in delayed diabetic wound healing. Melatonin, a major secretory product of the pineal gland, promotes diabetic wound healing; however, its mechanism of action remains unclear. Here, EPCs were isolated from the bone marrow of mice. Treatment of EPCs with melatonin alleviated advanced glycation end product (AGE)-induced apoptosis and cellular dysfunction. We further examined autophagy flux after melatonin treatment and found increased light chain 3 (LC3) and p62 protein levels in AGE-treated EPCs. However, lysosome-associated membrane protein 2 expression was decreased, indicating that autophagy flux was impaired in EPCs treated with AGEs. We then evaluated autophagy flux after melatonin treatment and found that melatonin increased the LC3 levels, but attenuated the accumulation of p62, suggesting a stimulatory effect of melatonin on autophagy flux. Blockage of autophagy flux by chloroquine partially abolished the protective effects of melatonin, indicating that autophagy flux is involved in the protective effects of melatonin. Furthermore, we found that the AMPK/mTOR signaling pathway is involved in autophagy flux stimulation by melatonin. An in vivo study also illustrated that melatonin treatment ameliorated impaired wound healing in a streptozotocin-induced diabetic wound healing model. Thus, our study shows that melatonin protects EPCs against apoptosis and dysfunction via autophagy flux stimulation and ameliorates impaired wound healing in vivo, providing insight into its mechanism of action in diabetic wound healing.

Effects of Gamijaungo on the burn mice model and the study of hematologic, pathologic and molecular mechanism (가미자운고(加味紫雲膏)가 mouse의 피부화상 치료에 대한 분자생물학적 효과 및 기전연구)

  • Lee, Jong-Chul;Kim, Gyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.1
    • /
    • pp.53-67
    • /
    • 2015
  • Objective: The aim of this study was to investigate the wound healing effect of herbal ointment, Gamijaungo, on the burn-induced model. Reports about Gamijaungo on the wound healing effect by local application in mice model or human study have published in the several domestic or internationally, but most are anecdotal and lack solid scientific evidence. Method: We observed the morphologic and histologic changes in the burn-induced mice model. we counted white blood cell and platelet changes. we confirmed VEGF, PI3K and pAkt protein expression by Western blot analysis. Result: In this study, we observed that Gamijaungo showed strong wound healing effects in the morphologic and histologic changes in the burn-induced mice model. Also we found that the significant changes of white blood cell and platelet changes by the treatment of Gamijaungo. In molecular mechanism, we got the strong positive effect by Gamijaungo treatment on angiogenesis, a key process in the formation of the granulation tissue during wound healing. Conclusion: These findings suggest the potential use of Gamijaungo as a therapeutic in thermal burn-induced skin injuries.

Evaluation of Topical Drug Containing Solcoseryl and Micronomicin on Surgical Wound in Mice

  • Chung, Kae-Jong;Chang, Man-Sik;Chun, Jong-Ok;Chun, Jae-Kwang;Kim, Sung-Chul;Park, Wahn-Soo;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 1994
  • Wound healing and antibacterial effects of solcoseryl-micronomicin combination gel on an open wound were studied in mice. A simple model was designed for assessing the effects. Using the model, we compared the efficacy of a combined topical gel of solcoseryl and micronomicin with those gels of solcoseryl or micronomicin alone. From the results of our experiment, the wound healing effect of open wounds by treatment with the combination gel was significantly enhanced when compared with those by treatment with solcoseryl gel or micronomicin gel alone. And the antibacterial effect of the combination gel was higher than those of solcoseryl gel or micronomicin gel alone.

  • PDF

Biological Effects of Vinca minor extract; Tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity in keratinocytes

  • Kim, Jun-Sub;Yu, Il-Hwan;Joo, Ji-Hye;Nam, Gyeong Hoe;Jung, Kyung-Hwan;Chung, Young Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.788-794
    • /
    • 2016
  • Vinca alkaloids from plant Vinca minor have been investigated for their effects of tyrosinase inhibition, stimulation of ROS generation and increasement of cell migration activity. The methanolic crude extract and the water-soluble fraction exhibited $IC_{50}$ value of 3.1 mg/mL and 2.1 mg/mL. Vinca minor extract treatment significantly increased ROS levels in HaCaT cells, in a concentration-dependent manner. Treatments of Vinca minor extract led to increase wound closure when compared with non-treatment. Low dose (0.1% or 0.3%) of extracts have not significantly affected, compared with that in controls. By contrast, 0.5% extract have dramatic effect on wound healing activity of keratinocytes. Effects of Vinca minor extract in a filter-based cell mobility assay appear similar to that of wound closure assay, which suggests that the Vinca minor extract have wound healing effects on skin.

The Effect of Dangguijakyak-san on Wound Healing (당귀작약산의 창상 회복에 대한 효과)

  • Yun-Jin Lee;Chang-Hoon Woo;Young-Jun Kim;Hyeon-Ji Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.47-65
    • /
    • 2023
  • Objectives We evaluated the wound healing effects of Dangguijakyak-san (DJ) using C57BL/6 mice that were generated open wound. Methods The study was conducted with seven C57BL/6 mice assigned to each group, divided into the normal group, control group, vitamin E group, DJ low-dose group, DJ high-dose group. We measured total polyphenol, flavonoid contents, the size of the wound, liver function, pro-inflammatory cytokine activity in serum, inflammation-related proteins, adhesion molecules and chemokine proteins, collagen-related proteins in skin tissue and histopathological changes by H&E and Masson's staining. Results DJ treatment significantly reduced the area of the wound compared to the control group. Also, inflammatory cytokines were reduced and the expression of anti-inflammatory-related factors (interleukin-4 [IL-4] and IL-10) was significantly increased in the DJ treatment group. We identified that DJ treatment inhibits both pathways of inflammation, the mitogen-activated protein kinases and nuclear factor-κB pathway. Moreover, the protein expressions of Sirt1 (sirtuin 1), MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1) were decreased by DJ administration. Also, the expression of α-smooth muscle actin and collagen type I alpha 1, collagen-related proteins, that help skin recovery was significantly increased in the DJ treatment group. Histopathologically, a relatively thin epithelial layer could be observed in the DJ administration group, as well as an increase in fibroblasts and collagen fibers. Conclusions These data suggest that DJ treatment is effective in wound healing, suppressing inflammatory proteins, increasing skin repair factors and improving histopathological changes caused by wounds.

In Vitro and in Vivo Wound Healing Properties of Plasma and Serum from Crocodylus siamensis Blood

  • Jangpromma, Nisachon;Preecharram, Sutthidech;Srilert, Thanawan;Maijaroen, Surachai;Mahakunakorn, Pramote;Nualkaew, Natsajee;Daduang, Sakda;Klaynongsruang, Sompong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1140-1147
    • /
    • 2016
  • The plasma and serum of Crocodylus siamensis have previously been reported to exhibit potent antimicrobial, antioxidant, and anti-inflammatory activities. During wound healing, these biological properties play a crucial role for supporting the formation of new tissue around the injured skin in the recovery process. Thus, this study aimed to evaluate the wound healing properties of C. siamensis plasma and serum. The collected data demonstrate that crocodile plasma and serum were able to activate in vitro proliferation and migration of HaCaT, a human keratinocyte cell line, which represents an essential phase in the wound healing process. With respect to investigating cell migration, a scratch wound experiment was performed which revealed the ability of plasma and serum to decrease the gap of wounds in a dose-dependent manner. Consistent with the in vitro results, remarkably enhanced wound repair was also observed in a mouse excisional skin wound model after treatment with plasma or serum. The effects of C. siamensis plasma and serum on wound healing were further elucidated by treating wound infections by Staphylococcus aureus ATCC 25923 on mice skin coupled with a histological method. The results indicate that crocodile plasma and serum promote the prevention of wound infection and boost the re-epithelialization necessary for the formation of new skin. Therefore, this work represents the first study to demonstrate the efficiency of C. siamensis plasma and serum with respect to their wound healing properties and strongly supports the utilization of C. siamensis plasma and serum as therapeutic products for injured skin treatment.

The Effect of Microcurrent Stimulation on Wound Healing in Rat (미세전류전기자극이 흰쥐의 창상치유에 미치는 영향)

  • Oh, Hye-Jin;Kim, Jung-Woo;Park, Jang-Sung
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.6 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The purpose of this study was to investigate the effect of microcurrent stimulation intensity($50{\mu}A,\;100{\mu}A,\;300{\mu}A$ - 5 pps pulse frequency was same) on wound healing in rat. Sixty male Korean rats were randomly divided into 4 groups of 15 for 4 different treatment protocols(none-control group, $50{\mu}A,\;100{\mu}A,\;300{\mu}A$ experimental groups). Experimental 20 mm linear wound were made and all animals in the experimental groups were received microcurrent stimulation once a day for 20 minutes until sacrifice days(1st day, 3rd day, 6th day). A vernier caliper was used to measure a wound healing length and an optical microscope was used to determine any histological changes. The repeated measures two-way ANOVA was used for statistical differences in wound healing length. Experimental results were as follows: 1. In the examination with the naked eye, all groups showed similar changes until 1st day. But from 3rd day, a little intercellular fluid soaked through wound region in control group. In experimental groups, little intercellular fluid soaked through wound region, and swelling and redness did not appear. 2. Wound length of experimental $50{\mu}A$ group was significantly decreased than control group(p<0.001). And in the aspect of application period, wound length was significantly decreased in 3th, 6th day than 1st day and 6th day than 3th day (p<0.001). In conclusion, it has been found that the microcurrent stimulation had a positive effect on wound healing. And $50{\mu}A$ stimulation intensity was more effective than other intensities($100{\mu}A,\;300{\mu}A$) in wound healing. Also, low-intensity microcurrent stimulation was more effective on the purpose of wound healing.

  • PDF

630 nm Light Emitting Diode Irradiation Improves Dermal Wound Healing in Rats

  • Lee, Jae-Hyoung;Jekal, Seung-Joo;Kwon, Pil-Seung
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.140-146
    • /
    • 2015
  • Purpose: To determine the effects of 630 nm light emitting diode (LED) on full-thickness wound healing. Methods: Twelve male Sprague-Dawley rats were randomly divided into LED (n=6) and control group (n=6). Two $19.63mm^2$ wounds were created on the mid dorsum. LED group received a 630 nm LED irradiation with $3.67mW/cm^2$ for 30 minutes ($6.60J/cm^2$) for 7 days, while control group received sham LED irradiation. Epithelial gap, collagen density, ${\alpha}$-SMA fibroblast and PCNA keratinocyte were measured on histochemical and immunohistochemical staining using image analysis system. An independent t-test was conducted to compare the difference between groups. Results: The wound closure rate, collagen density, ${\alpha}$-SMA fibroblast number, epithelial gap and PCNA keratinocyte number have shown no significant difference between LED and control group at day 3 after the treatment. At day 7 after the treatment, the wound closure rate in LED group was increased when compared with control group (p<0.05). The collagen density (p<0.05) and ${\alpha}$-SMA immunoreactive fibroblast number (p<0.001) were increased when compared with control group at day 7. The epithelial gap in LED group was significantly shorten than control group at day 7 (p<0.01). The PCNA positive cell number in LED group was higher than control group at day 7 (p<0.01). Conclusion: 630 nm LED with $3.67mW/cm^2$, $6.60J/cm^2$ accelerate collagen deposition by stimulating fibroblasts, and enhance wound contraction by differentiating myofibroblasts in the dermis, and accelerate keratinocyte proliferation by facilitating DNA synthesis in the epidermis. It may promote the healing process in proliferation stage of wound healing.