DOI QR코드

DOI QR Code

The Wound Healing Potential of Lignosus rhinocerus and Other Ethno-myco Wound Healing Agents

  • Hui-Yeng Y. Yap (Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University) ;
  • Mohammad Farhan Ariffeen Rosli (Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University) ;
  • Soon-Hao Tan (Department of Biomedical Science, Faculty of Medicine, Universiti Malaya) ;
  • Boon-Hong Kong (Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, Universiti Malaya) ;
  • Shin-Yee Fung (Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya)
  • Received : 2022.09.26
  • Accepted : 2022.12.29
  • Published : 2023.02.28

Abstract

Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/-products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.

Keywords

Acknowledgement

This work was supported by FRGS 2019-1 (FRGS/1/2019/SKK08/MAHSA/03/1).

References

  1. Grainger DW. Wound healing: enzymatically crosslinked scaffolds. Nat Mater. 2015;14(7):662-663. https://doi.org/10.1038/nmat4337
  2. Griffin DR, Weaver WM, Scumpia PO, et al. Scaffolds assembled from annealed building blocks. Nat Mater. 2015;14(7):737-744. https://doi.org/10.1038/nmat4294
  3. Kang J, Hu J, Karra R, et al. Modulation of tissue repair by regeneration enhancer elements. Nature. 2016;532(7598):201-206. https://doi.org/10.1038/nature17644
  4. Lee EJ, Huh BK, Kim SN, et al. Application of materials as medical devices with localized drug delivery capabilities for enhancing wound repair. Prog Mater Sci. 2017;89:392-410. https://doi.org/10.1016/j.pmatsci.2017.06.003
  5. Rani S, Ritter T. The Exosome - A naturally secreted nanoparticle and its application to wound healing. Adv Mater. 2016;28(27):5542-5552. https://doi.org/10.1002/adma.201504009
  6. Avinash D. Global skin and wound care market is expected to reach USD 25.98 billion by 2025: Fior Markets. Los Angeles (CA): GlobeNewswire; 2020.
  7. James S. Complementary & alternative medicine market worth $296.3 billion by 2027: Grand View Research, Inc. New York (NY): Cision PR Newswire; 2020.
  8. Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev. 2012;6(11):1-5. https://doi.org/10.4103/0973-7847.95849
  9. World Health Organization. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. Geneva: World Health Organization; 2004.
  10. Abd Jalil MA, Shuid AN, Muhammad N. Role of medicinal plants and natural products on osteoporotic fracture healing. Evid Based Complement Altern Med. 2012;2012:714512.
  11. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Neurol. 2014;4:1-10. https://doi.org/10.3389/fphar.2013.00177
  12. Ernst E, Cassileth BR. How useful are unconventional cancer treatments? Eur J Cancer. 1999; 35(11):1608-1613. https://doi.org/10.1016/S0959-8049(99)00198-7
  13. Kaneno R, Fontanari LM, Santos SA, et al. Effects of extracts from Brazilian Sun-Mushroom (Agaricus blazei) on the NK activity and lymphoproliferative responsiveness of Ehrlich tumorbearing mice. Food Chem Toxicol. 2004;42(6):909-916. https://doi.org/10.1016/j.fct.2004.01.014
  14. Kumarasamyraja D, Jeganathan NS, Manavalan R. A review on medicinal plants with potential hypolipidemic activity. Int J Pharm Sci. 2012;2(4):101-107.
  15. Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020;58(3): 298-312. https://doi.org/10.1007/s12016-019-08729-w
  16. Larouche J, Sheoran S, Maruyama K, et al. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209-231. https://doi.org/10.1089/wound.2017.0761
  17. Otterc,o AN, Andrade AL, Brassolatti P, et al. Photobiomodulation mechanisms in the kinetics of the wound healing process in rats. J Photochem Photobiol B. 2018;183:22-29. https://doi.org/10.1016/j.jphotobiol.2018.04.010
  18. Sarheed O, Ahmed A, Shouqair D, et al. Antimicrobial dressings for improving wound healing. In: Alexandrescu V, editor. Wound healing - new insights into ancient challenges. London: IntechOpen; 2016. p. 298-378.
  19. Drucker CR. Update on topical antibiotics in dermatology. Dermatol Ther. 2012;25(1):6-11. https://doi.org/10.1111/j.1529-8019.2012.01493.x
  20. Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.
  21. Maeda S, Fujimoto M, Matsushita T, et al. Inducible costimulator (ICOS) and ICOS ligand signaling has pivotal roles in skin wound healing via cytokine production. Am J Pathol. 2011;179(5):2360-2369. https://doi.org/10.1016/j.ajpath.2011.07.048
  22. Mori R, Shaw TJ, Martin P. Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med. 2008;205(1):43-51. https://doi.org/10.1084/jem.20071412
  23. Wang L-L, Zhao R, Li J-Y, et al. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing. Eur J Pharmacol. 2016;786:128-136. https://doi.org/10.1016/j.ejphar.2016.06.006
  24. Makino K, Jinnin M, Aoi J, et al. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing. PLoS One. 2014;9(5):e97972.
  25. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514-525. https://doi.org/10.1038/sj.jid.5700701
  26. Pastar I, Stojadinovic O, Yin NC, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3(7):445-464. https://doi.org/10.1089/wound.2013.0473
  27. Morasso MI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell. 2005; 97(3):173-183. https://doi.org/10.1042/BC20040098
  28. Mann A, Breuhahn K, Schirmacher P, et al. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization. J Invest Dermatol. 2001;117(6):1382-1390. https://doi.org/10.1046/j.0022-202x.2001.01600.x
  29. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674-686. https://doi.org/10.1097/00042728-200506000-00011
  30. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care. 2016;5(3):119-136. https://doi.org/10.1089/wound.2014.0561
  31. McDougall S, Dallon J, Sherratt J, et al. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans A Math Phys Eng Sci. 2006;364(1843):1385-1405. https://doi.org/10.1098/rsta.2006.1773
  32. Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering. 2021;8(5):63.
  33. Leask A, Abraham DJ. TGF-B signaling and the fibrotic response. FASEB J. 2004;18(7):816-827. https://doi.org/10.1096/fj.03-1273rev
  34. Tonnesen MG, Feng X, Clark RAF. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5(1):40-46. https://doi.org/10.1046/j.1087-0024.2000.00014.x
  35. Brem H, Sheehan P, Boulton AJM. Protocol for treatment of diabetic foot ulcers. Am J Surg. 2004;187(5):S1-S10. https://doi.org/10.1016/S0002-9610(03)00299-X
  36. Junger M, Steins A, Hahn M, et al. Microcirculatory dysfunction in chronic venous insufficiency (CVI). Microcirculation. 2000;7:3-12. https://doi.org/10.1080/713774003
  37. Stavrou D. Neovascularisation in wound healing. J Wound Care. 2008;17(7):298-300, 302. https://doi.org/10.12968/jowc.2008.17.7.30521
  38. Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced MicroRNA-424 expression in human endothelial cells regulates HIF-a isoforms and promotes angiogenesis. J Clin Invest. 2010;120(11):4141-4154. https://doi.org/10.1172/JCI42980
  39. Tchanque-Fussuo CN, Dahle SE, Buchman SR, et al. Deferoxamine: potential novel topical therapeutic for chronic wounds. Br J Dermatol. 2017; 176:1056-1059. https://doi.org/10.1111/bjd.14956
  40. Clark RAF. Regulation of fibroplasia in cutaneous wound repair. Am J Med Sci. 1993;306(1):42-48. https://doi.org/10.1097/00000441-199307000-00011
  41. Li B, Wang JHC. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108-120. https://doi.org/10.1016/j.jtv.2009.11.004
  42. Marangoni RG, Korman BD, Wei J, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 2015;67(4):1062-1073. https://doi.org/10.1002/art.38990
  43. Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-B1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103-111. https://doi.org/10.1083/jcb.122.1.103
  44. Montesano R, Orci L. Transforming growth factor B stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc Natl Acad Sci U S A. 1988;85(13):4894-4897. https://doi.org/10.1073/pnas.85.13.4894
  45. Yeh C-J, Chen C-C, Leu Y-L, et al. The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci Rep. 2017;7(1):15513-15599. https://doi.org/10.1038/s41598-017-15605-0
  46. Warnock DW. Superficial, subcutaneous and systemic mycoses. Greenwood D, et al., editors. Elsevier Ltd: London; 2012.
  47. Machado MP, Filho ER, Terezan AP, et al. Cytotoxicity, genotoxicity and antimutagenicity of hexane extracts of Agaricus blazei determined in vitro by the comet assay and CHO/HGPRT gene mutation assay. Toxicol In Vitro. 2005;19(4):533-539. https://doi.org/10.1016/j.tiv.2004.12.005
  48. Batterbury M, Tebbs CA, Rhodes JM, et al. Agaricus bisporus (edible mushroom lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp Eye Res. 2002;74(3):361-370. https://doi.org/10.1006/exer.2001.1133
  49. Kent D, Sheridan CM, Tomkinson HA, et al. Edible mushroom (Agaricus bisporus) lectin inhibits human retinal pigment epithelial cell proliferation in vitro. Wound Repair Regen. 2003; 11(4):285-291. https://doi.org/10.1046/j.1524-475X.2003.11408.x
  50. Wenkel H, Kent D, Hiscott P, et al. Modulation of retinal pigment epithelial cell behavior by Agaricus bisporus lectin. Investigat Ophthalmol Visual Sci. 1999;40(12):3058-3062.
  51. Lam WP, Wang CM, Tsui TY, et al. Extract of white button mushroom affects skin healing and angiogenesis. Microsc Res Tech. 2012;75(10):1334-1340. https://doi.org/10.1002/jemt.22071
  52. Sui Z, Yang R, Liu B, et al. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1b mRNA expression in skin of burn wound-treated rats. Int J Biol Macromol. 2010;47(2):155-157. https://doi.org/10.1016/j.ijbiomac.2010.05.006
  53. Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-jB. Biomedical papers of the medical faculty of. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(1):1-13. https://doi.org/10.5507/bp.2016.063
  54. Khamlue R, Naksupan N, Ounaroon A, et al. Skin wound healing promoting effect of polysaccharides extracts from Tremella fuciformis and Auricularia auricula on ex-vivo porcine skin wound healing model. Singapore: IACSIT Press; 2012.
  55. Krupodorova TA, Klymenko PP, Barshteyn VY, et al. Effects of Ganoderma lucidum (curtis) P. Karst and Crinipellis schevczenkovi Buchalo aqueous extracts on skin wound healing. J Phytopharmacol. 2015;4(4):197-201. https://doi.org/10.31254/phyto.2015.4401
  56. Gupta A, Kirar V, Keshri GK, et al. Wound healing activity of an aqueous extract of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes). Int J Med Mushrooms. 2014;16(4):345-354. https://doi.org/10.1615/IntJMedMushrooms.v16.i4.50
  57. Kumakura K, Hori C, Matsuoka H, et al. Protein components of water extracts from fruiting bodies of the Reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. J Sci Food Agric. 2019;99(2):529-535. https://doi.org/10.1002/jsfa.9211
  58. Fleming D, Chahin L, Rumbaugh KP. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017;61(2):1-9. https://doi.org/10.1128/AAC.01998-16
  59. Redman WK, Welch GS, Rumbaugh KP. Differential efficacy of glycoside hydrolases to disperse biofilms. Front Cell Infect Microbiol. 2020;10:377-379. https://doi.org/10.3389/fcimb.2020.00377
  60. Snarr BD, Baker P, Bamford NC, et al. Microbial glycoside hydrolases as antibiofilm agents with Cross-Kingdom activity. Proc Natl Acad Sci USA. 2017;114(27):7124-7129. https://doi.org/10.1073/pnas.1702798114
  61. McCarty SM, Percival SL. Proteases and delayed wound healing. Adv Wound Care. 2013;2(8):438-447. https://doi.org/10.1089/wound.2012.0370
  62. Lin HJ, Chang YS, Lin LH, et al. An immunomodulatory protein (ling zhi-8) from a Ganoderma lucidum induced acceleration of wound healing in rat liver tissues after monopolar electrosurgery. Evid Based Complement Altern Med. 2014;2014:916531.
  63. Cheng PG, Phan CW, Sabaratnam V, et al. Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis: fr.) P. Karst accelerates wound healing in Streptozotocin-induced diabetic rats. Evid Based Complement Altern Med. 2013;2013:671252.
  64. Hung W-S, Fang C-L, Su C-H, et al. Cytotoxicity and immunogenicity of SACCHACHITIN and its mechanism of action on skin wound healing. J Biomed Mater Res. 2001;56(1):93-100. https://doi.org/10.1002/1097-4636(200107)56:1<93::AID-JBM1072>3.0.CO;2-B
  65. Hung W-S, Lai W-FT, Leu B, et al. Effect of SACCHACHITIN on keratinocyte proliferation and the expressions of type I collagen and tissue-transglutaminase during skin wound healing. J Biomed Mater Res B Appl Biomater. 2004;70(1):122-129.
  66. Jiang H, Zheng M, Liu X, et al. Feasibility study of tissue transglutaminase for self-catalytic crosslinking of self-assembled collagen fibril hydrogel and its promising application in wound healing promotion. ACS Omega. 2019;4(7):12606-12615. https://doi.org/10.1021/acsomega.9b01274
  67. Abdulla MA, Fard AA, Sabaratnam V, et al. Potential activity of aqueous extract of culinary-medicinal Lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) in accelerating wound healing in rats. Int J Med Mushrooms. 2011;13(1):33-39. https://doi.org/10.1615/IntJMedMushr.v13.i1.50
  68. Wong K-H, Naidu M, David P, et al. Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evid Based Complement Altern Med. 2011;2011:1-10.
  69. Wong K-H, Kanagasabapathy G, Bakar R, et al. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr.) Pers. Through its neuroregenerative action. Food Sci Technol. 2015;35(4):712-721. https://doi.org/10.1590/1678-457X.6838
  70. Yu Z, LiHua Y, Qian Y, et al. Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol. Carbohydr Polym. 2009;75(1):115-118. https://doi.org/10.1016/j.carbpol.2008.07.002
  71. Chen X, HaiYan Z, JianHong Z, et al. The pharmacological effect of polysaccharides from Lentinus edodes on the oxidative status and expression of VCAM-1mRNA of thoracic aorta endothelial cell in high-fat-diet rats. Carbohydr Polym. 2008;74:445-450.
  72. Bae J-S, Jang K-h, Park S-C, et al. Promotion of dermal wound healing by polysaccharides isolated from Phellinus gilvus in rats. J Vet Med Sci. 2005;67(1):111-114. https://doi.org/10.1292/jvms.67.111
  73. Bae JS, Jang KH, Jin HK. Polysaccharides isolated from Phellinus gilvus enhances dermal wound healing in streptozotocin-induced diabetic rats. J Vet Sci. 2005;6(2):161-164. https://doi.org/10.4142/jvs.2005.6.2.161
  74. Kwon A-H, Qiu Z, Hashimoto M, et al. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197(4):503-509. https://doi.org/10.1016/j.amjsurg.2007.11.021
  75. Yamamoto K, Kimura T. Orally and topically administered Sparassis crispa (Hanabiratake) improved healing of skin wounds in mice with streptozotocin-induced diabetes. Biosci Biotechnol Biochem. 2013;77(6):1303-1305. https://doi.org/10.1271/bbb.121016
  76. Lai WH, Siti Murni MJ, Fauzi D, et al. Optimal culture conditions for mycelial growth of Lignosus rhinocerus. Mycobiology. 2011;39(2):92-95. https://doi.org/10.4489/MYCO.2011.39.2.092
  77. Tan CS, Ng ST, Vikineswary S, et al. Genetic markers for identification of a Malaysian medicinal mushroom, Lignosus rhinocerus (cendawan susu rimau). Acta Hortic. 2010;859(859):161-167. https://doi.org/10.17660/ActaHortic.2010.859.19
  78. Wong LZ. Health benefits of wild tiger's milk mushroom. Selangor: TheStar; 2011.
  79. Petrovi c P, Vunduk J, Klaus A, et al. From mycelium to spores: a whole circle of biological potency of mosaic puffball. S Afr J Bot. 2019;123:152-160. https://doi.org/10.1016/j.sajb.2019.03.016
  80. Burk WR. Puffball usages among North American Indians. J Ethnobiol. 1983;3(1):55-62.
  81. Rai BK, Ayachi SS, Rai A. A note on ethnomyco-medicines from Central India. Mycologist. 1993;7(4):192-193. https://doi.org/10.1016/S0269-915X(09)80397-2
  82. Berkeley MJ. Outlines of British fungology. London: Lovell Reeve; 1860.
  83. Wei W, Luo X, Zheng L, et al. Isolation of a wild Morchella spp. strain and the effects of its extract on Ethanol-Induced gastric mucosal lesions in rats. Zeitschrift Fur Naturforschung C-J Biosci. 2011;66(1-2):55-62. https://doi.org/10.1515/znc-2011-1-208
  84. Lone FA, Lone S, Aziz MA, et al. Ethnobotanical studies in the tribal areas of district Kupwara, Kashmir, India. Int J Pharma Bio Sci. 2012;3(4):399-411.
  85. Mahmood A, Rifat NM, Zabta KS, et al. Ethnobotanical survey of plants from Neelum, Azad Jammu & Kashmir, Pakistan. Pak J Bot. 2011;43:105-110.
  86. Stamets P, Zwickey H. Medicinal mushrooms: ancient remedies meet modern science. Integr Med. 2014;13(1):46-47.
  87. Buller AHR. The fungus lore of the Greeks and Romans. Worcester: Baylis; 1914.
  88. Saar M. Fungi in Khanty folk medicine. J Ethnopharmacol. 1991;31(2):175-179. https://doi.org/10.1016/0378-8741(91)90003-V
  89. Vaidya JG, Rabba AS. Fungi in folk medicine. Mycologist. 1993;7(3):131-133. https://doi.org/10.1016/S0269-915X(09)80073-6
  90. Grienke U, Zoll M, Peintner U, et al. European € medicinal polypores - a modern view on traditional uses. J Ethnopharmacol. 2014;154(3): 564-583. https://doi.org/10.1016/j.jep.2014.04.030
  91. Kutalek R. Ethomykologie - eine ubersicht. Osterr Z. Pilzk. 2002;11:79.
  92. Gilmore MR. Uses of plants by the Indians of the Missouri River region. In: Thirty-third annual report of the Bureau of American Ethnology, 1911-1912. Bureau of American Ethnology; 1919. p. 43-154.
  93. Grundemann C, Reinhardt JK, Lindequist U. European medicinal mushrooms: do they have potential for modern medicine? - an update. Phytomedicine. 2019;66:1-33.
  94. Zivkovic J, et al. Ethnomycological investigation in Serbia: astonishing realm of mycomedicines and mycofood. J Fungi. 2021;7(349):1-21.
  95. Hobbs C. Medicinal mushrooms - an exploration of tradition, healing and culture. Canada: Botanica Press; 1995.
  96. Rai M, Tidke G, Wasser SP. Therapeutic potential of mushrooms. Nat Prod Radiance. 2005;4(4):246-257.
  97. Buswell JA, Chang ST. Edible mushrooms: attributes and applications. In: Chang AC, editor. Genetics and breeding of edible mushrooms. 1st ed. London: CRC Press; 1993.
  98. Haji Taha A. Orang Asli: the hidden treasure. Malaysia: Jabatan Muzium Negara; 2006.
  99. Huang N. Identification of the scientific name of Hurulingzhi. Acta Edulis Fungi. 1999;6:32-34.
  100. Yokota A. Tropical forests and people's livelihood: stalls of traditional medicine vendors in Kota Kinabalu. JIRCAS Newsletter. 2011;62:9-10.
  101. Burkill IH, Birtwistle W, Foxworthy FW, et al. A dictionary of the economic products of the Malay peninsula. 2nd ed. Vol. 1. Kuala Lumpur: ministry of Agriculture; 1966.
  102. Eik L-F, Naidu M, David P, et al. Lignosus rhinocerus (Cooke) Ryvarden: a medicinal mushroom that stimulates neurite outgrowth in PC-12 cells. Evid Based Complement Altern Med. 2012;2012:320308.
  103. Nurraihana H, Norfarizan-Hanoon NA, Hasmah A, et al. Ethnomedical survey of aborigines medicinal plants in Gua Musang, Kelantan, Malaysia. Health Environ J. 2016;7(1):59-76.
  104. Katas H, Lim CS, Nor Azlan AYH, et al. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm J. 2019;27(2):283-292. https://doi.org/10.1016/j.jsps.2018.11.010
  105. Vikineswary S, Chang ST. Edible and medicinal mushrooms for sub-health intervention and prevention of lifestyle diseases. Tech Monitor. 2013; 3:33-43.
  106. Abdullah N, Haimi MZD, Lau BF, et al. Domestication of a wild medicinal sclerotial mushroom, Lignosus rhinocerotis (Cooke) Ryvarden. Ind Crops Prod. 2013;47:256-261. https://doi.org/10.1016/j.indcrop.2013.03.012
  107. Lau BF, Abdullah N, Aminudin N, et al. Ethnomedicinal uses, pharmacological activities, and cultivation of Lignosus spp. (tigers milk mushrooms) in Malaysia - a review. J Ethnopharmacol. 2015;169:441-458. https://doi.org/10.1016/j.jep.2015.04.042
  108. Tan CS. Setting-up pilot-plant for up-scaling production of 'TigerMilk'-mushroom as dietary functional food. Technical Report MOA TF0109M004, Government of Malaysia; 2009.
  109. Yap HY, Kong BH, Fung SY. Bioactive properties of Malaysian medicinal mushrooms Lignosus spp. In: Deshmukh SK, Sridhar KR, Badalyan SM, editors. Fungal biotechnology: prospects and avenues. Boca Raton (FL): 2022; CRC Press. p. 18.
  110. Chang YS, Lee SS. Utilisation of macrofungi species in Malaysia. Fungal Divers. 2004;15:15-22.
  111. Yap YHY, Tan N, Fung S, et al. Nutrient composition, antioxidant properties, and anti-Proliferative activity of Lignosus rhinocerus Cooke sclerotium. J Sci Food Agric. 2013;93(12):2945-2952. https://doi.org/10.1002/jsfa.6121
  112. Lau BF, Abdullah N, Aminudin N. Chemical composition of the tiger's milk mushroom, Lignosus rhinocerotis (Cooke) Ryvarden, from different developmental stages. J Agric Food Chem. 2013;61(20):4890-4897. https://doi.org/10.1021/jf4002507
  113. Ellan K, Thayan R, Raman J, et al. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: an in-vitro study. BMC Complement Altern Med. 2019;19(1):212-260. https://doi.org/10.1186/s12906-019-2634-1
  114. Mohanarji S, Dharmalingam S, Kalusalingam A, et al. Screening of Lignosus rhinocerus extracts as antimicrobial agents against selected human pathogens. J Pharm Biomed Sci. 2012;18(11):1-4.
  115. Hu T, Huang Q, Wong K, et al. Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia. Int J Biol Macromol. 2017;94(Pt A):423-430. https://doi.org/10.1016/j.ijbiomac.2016.10.051
  116. Sum AYC, Li X, Yeng YYH, et al. The immune-modulating properties of tiger milk medicinal mushroom, Lignosus rhinocerus TM02VR cultivar (Agaricomycetes) and its associated carbohydrate composition. Int J Med Mushrooms. 2020;22(8):803-814. https://doi.org/10.1615/IntJMedMushrooms.2020035658
  117. Johnathan M, Gan SH, Ezumi MFW, et al. Phytochemical profiles and inhibitory effects of tiger milk mushroom (Lignosus rhinocerus) extract on ovalbumin-induced airway inflammation in a rodent model of asthma. BMC Complement Altern Med. 2016;16:113-167. https://doi.org/10.1186/s12906-016-1088-y
  118. Lee SS, Tan NH, Fung SY, et al. Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the tiger milk mushroom. BMC Complement Altern Med. 2014;14(359):358-359. https://doi.org/10.1186/1472-6882-14-358
  119. Guo C, Wong K-H, Cheung PCK. Hot water extract of the sclerotium of Polyporus rhinocerus Cooke enhances the immune functions of murine macrophages. Int J Med Mushrooms. 2011;13(3):237-244. https://doi.org/10.1615/IntJMedMushr.v13.i3.30
  120. Thuraisingam T, Xu YZ, Eadie K, et al. MAPKAPK-2 signaling is critical for cutaneous wound healing. J Invest Dermatol. 2010;130(1):278-286. https://doi.org/10.1038/jid.2009.209
  121. Shreiber J, Efron PA, Park JE, et al. Adenoviral gene transfer of an NF-κB super-repressor increases collagen deposition in rodent cutaneous wound healing. Surgery. 2005;138(5):940-946. https://doi.org/10.1016/j.surg.2005.05.020
  122. Wang L, Wu X, Shi T, et al. Epidermal growth factor (EGF)-induced corneal epithelial wound healing through nuclear factor κB subtype-regulated CCCTC binding factor (CTCF) activation. J Biol Chem. 2013;288(34):24363-24371. https://doi.org/10.1074/jbc.M113.458141
  123. Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453(7193):314-321. https://doi.org/10.1038/nature07039
  124. Chen J, Chen Y, Chen Y, et al. Epidermal CFTR suppresses MAPK/NF-κB to promote cutaneous wound healing. Cell Physiol Biochem. 2016;39(6):2262-2274. https://doi.org/10.1159/000447919
  125. Heo SC, Jeon ES, Lee IH, et al. Tumor necrosis factor-a-Activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol. 2011;131(7):1559-1567. https://doi.org/10.1038/jid.2011.64
  126. Wang J, Mukaida N, Zhang Y, et al. Enhanced mobilization of hematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukoc Biol. 1997;62(4):503-509. https://doi.org/10.1002/jlb.62.4.503
  127. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35-43. https://doi.org/10.1159/000339613
  128. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219-229. https://doi.org/10.1177/0022034509359125
  129. Childs DR, Murthy AS. Overview of wound healing management. Surg Clin North Am. 2017; 97(1):189-207. https://doi.org/10.1016/j.suc.2016.08.013
  130. Vagesjo E, Ohnstedt E, Mortier A, et al. Accelerated wound healing in mice by on-Site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc Natl Acad Sci U S A. 2018;115(8):1895-1900. https://doi.org/10.1073/pnas.1716580115
  131. Hayta SB, Durmus, K, Altuntas, EE, et al. The reduction in inflammation and impairment in wound healing by using strontium chloride hexahydrate. Cutan Ocul Toxicol. 2018;37(1):24-28. https://doi.org/10.1080/15569527.2017.1326497
  132. Wardlaw AJ, Moqbel R, Kay AB. Eosinophils: biology and role in disease. Adv Immunol. 1995;60:151-266. https://doi.org/10.1016/S0065-2776(08)60586-6
  133. Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov. 2013;12(2):117-129. https://doi.org/10.1038/nrd3838
  134. Barrel A. What to know about tumor necrosis factor. In: Chun C, editor. Medical news today. San Francisco (CA): Healthline Media; 2019.
  135. Gieseck RL III, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018;18(1):62-76. https://doi.org/10.1038/nri.2017.90
  136. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches wound management. Clin Microbiol Rev. 2001;14(2):244-269. https://doi.org/10.1128/CMR.14.2.244-269.2001
  137. Ahmad MS, Noor ZM, Ariffin ZZ. New thrombolytic agent from endophytic fungi and Lignosus rhinocerus. Open Conf Proc J. 2014;4:95-98. https://doi.org/10.2174/2210289201304020095
  138. Veeraperumal S, Qiu H-M, Tan C-S, et al. Restitution of epithelial cells during intestinal mucosal wound healing: the effect of a polysaccharide from the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden. J Ethnopharmacol. 2021;274:114024.
  139. Sturm A, Dignass AU. Epithelial restitution and wound healing in inflammatory bowel disease. World J Gastroenterol. 2008;14(3):348-353. https://doi.org/10.3748/wjg.14.348
  140. Badalyan SM. Antiprotozoal activity and mitogenic effect of mycelium of culinary-medicinal shiitake mushroom Lentinus edodes (Berk.) singer (Agaricomycetideae). Int J Med Mushr. 2004;6(2):131-138. https://doi.org/10.1615/IntJMedMushr.v6.i2.40
  141. Hong LW, et al. Vitrification of dikaryotic mycelial cells from Lignosus rhinocerus. Pertanika J Trop Agric Sci. 2013;36(3):249-260.
  142. Laessoe T, Spooner B. The uses of 'Gasteromycetes'. Mycologist. 1994;8(4):154-159. https://doi.org/10.1016/S0269-915X(09)80179-1
  143. Anusiya G, Gowthama Prabu U, Yamini NV, et al. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered. 2021;12(2):11239-11268. https://doi.org/10.1080/21655979.2021.2001183
  144. Robins JS. Styptic bandage. Lowe WV, editor. 1963. Available from: https://patents.google.com/patent/US3113568A/en