Journal of Korea Society of Industrial Information Systems
/
v.8
no.2
/
pp.14-20
/
2003
This paper presents a text extraction method of camera based document image. It is more difficult to recognize camera based document image in comparison with scanner based image because of segmentation problem due to variable lighting condition and versatile fonts. Both document binarization and character extraction are important processes to recognize camera based document image. After converting color image into grey level image, gray level normalization is used to extract character region independent of lighting condition and background image. Local adaptive binarization method is then used to extract character from the background after the removal of noise. In this character extraction step, the information of the horizontal and vertical projection and the connected components is used to extract character line, word region and character region. To evaluate the proposed method, we have experimented with documents mixed Hangul, English, symbols and digits of the ETRI database. An encouraging binarization and character extraction results have been obtained.
Kim, Jang-Won;Jeong, Dong-Won;Kim, Jin-Hyung;Baik, Doo-Kwon
Journal of the Korea Society for Simulation
/
v.15
no.3
/
pp.115-124
/
2006
XML is rapidly becoming technologies for information exchange and representation. It causes many research issues such as semantic modeling methods, security, conversion far interoperability with other models, and so on. Especially, the most important issue for its practical application is how to achieve the interoperability between XML model and relational model. Until now, many suggestions have been proposed to achieve it. However several problems still remain. Most of all, the exiting methods do not consider implicit referential integrity relations, and it causes incorrect data delivery. One method to do this has been proposed with the restriction where one semantic is defined as only one same name in a given database. In real database world, this restriction cannot provide the application and extensibility. This paper proposes a noble conversion (RDB-to-XML) algorithm based on the similarity checking technique. The key point of our method is how to find implicit referential integrity relations between different field names presenting one same semantic. To resolve it, we define an enhanced implicity referentiai integrity relations extraction algorithm based on a widely used ontology, WordNet. The proposed conversion algorithm is more practical than the previous-similar approach.
Proceedings of the Korea Inteligent Information System Society Conference
/
2006.06a
/
pp.237-244
/
2006
시맨틱 웹 관련연구가 증가함에 따라 하나의 관련분야로 규칙기반 시스템 동의 지능적인 웹 환경에 대한 기대 역시 커지고 있다. 하지만 규칙기반 시스템을 활용하기에는 아직도 규칙습득이 많은 제약이 되고 있다. 규칙습득은 웹으로부터 필요한 규칙을 습득하는 일련의 방법인데, 이러한 규칙을 습득하기 위해서는 규칙구성요소를 먼저 식별해야만 한다. 그러나 이러한 규칙을 식별하는 작업은 대부분 지식관리자의 수작업에 의해 이루어지고 있다. 본 연구의 목적은 웹으로부터 규칙구성요소 식별을 최대한 자동화하고 지식관리자의 수작업을 최소화함으로써 그 부담을 줄여 주는 데 있다. 이러한 방법으로는 온톨로지를 근간으로 하여 웹 페이지와의 문자열 비교, 이러한 비교의 한계를 극복하기 위한 확장등의 방법이 있다. 첫 번째 방법은 온툴로지 기반으로 규칙식별 할 웹 페이지와 비교를 통해 지식관리자의 규칙식별 과정을 최대한 자동화하여 주는 것이다. 여기서 만약 현재 규칙을 식별하고자 하는 웹 사이트와 유사한 시스템의 규칙들을 활용하여 일반화 된 온툴로지가 구축되었다면, 이 온톨로지를 기반으로 규칙을 식별하고자 하는 웹사이트와의 비교를 통해 규칙구성요소를 자동화하여 추출 할 수 있다. 이러한 온툴로지를 기반으로 규칙을 식별하기 위해서는 문자열 비교 기법을 사용하게 된다. 하지만 단순한 문자열 비교 기법만으로는 규칙을 식별하는 데에 자연어 처리에 대한 한계가 있다. 이를 극복하기 위해 다음의 두 번째 방법을 사용하고자 한다. 두 번째 방법은 정형화되지 않은 정보들을 확장하여 사용하는 것이다. 우선 찾고자 하는 단어들의 원형을 찾기 위한 스테밍 알고리즘 기법, WordNet을 이용하여 동의어 유의어등으로 확장을 하는 WordNet Expansion 기법, 의미 유사도를 측정하기 위한 방법인 Semantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다.
In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.
Radar signal identification of electronic warfare is a technology that recognizes the pulse repetition interval (PRI) from a set of pulse description words (PDWs) generated by the signal receiver. Conventionally batch processing is widely used in which a number of PDWs are collected as a unit and identifies PRI from the batch. In this paper, we propose a feature extraction algorithm based on the streaming process. This technique does not wait to form a batch. Whenever a PDW(Pulse Description Word) is generated from the signal receiver, the streaming process tries to form a cluster of PDWs, and makes the DTOA (Difference of Time of Arrival) histogram, finds out the frame PRI based on the concentration ratio, and decides the number of stagger stages. Experiments proved that the proposed algorithm derives stable recognition results as the cluster size increases.
Journal of the Korea Institute of Information Security & Cryptology
/
v.20
no.6
/
pp.43-51
/
2010
It is meaningful to investigate data in unallocated space because we can investigate the deleted data. Consecutively complete file recovery using the File Carving is possible in unallocated area, but noncontiguous or incomplete data recovery is impossible. Typically, the analysis of the data fragments are needed because they should contain large amounts of information. Microsoft Word, Excel, PowerPoint and PDF document file's text are stored using compression or specific document format. If the part of aforementioned document file was stored in unallocated data fragment, text extraction is possible using specific document format. In this paper, we suggest the method of extracting a particular document file text in unallocated data fragment.
Journal of the Korean Society for Library and Information Science
/
v.55
no.3
/
pp.343-372
/
2021
The purpose of this study is to select keywords that can recommend books by personality type, and to test whether the chosen keywords can be actually used in the categorization and customized recommendation of books for each personality type. To achieve the research goal, this study chose books that match the level of fifth and sixth grade elementary school students and first grade middle school students and commissioned an expert group to categorize the books into groups that are preferred by each personality type. As a result of the classification, half of the books in which more than five experts agreed showed high consensus. In addition, the results of classifying books by personality type with keywords extracted by the automatic word extraction system by collecting the book review data of the selected books were similar to the results of the final judgement by the expert group, except for a few books. In conclusion, this study proved that it is possible to classify and recommend books that are likely to be preferred by different personality types using review keywords.
In relation to the extraction of opinion words, it may be difficult to directly apply most of the methods suggested in existing English studies to the Korean language. Additionally, the manual method suggested by studies in Korea poses a problem with the extraction of opinion words in that it takes a long time. In addition, English thesaurus-based extraction of Korean opinion words leaves a challenge to reconsider the deterioration of precision attributed to the one to one mismatching between Korean and English words. Studies based on Korean phrase analyzers may potentially fail due to the fact that they select opinion words with a low level of frequency. Therefore, this study will suggest the k-Structure (k=5 or 8) method, which may possibly improve the precision while mutually complementing existing studies in Korea, in automatically extracting opinion words from a simple sentence in a given Korean product review. A simple sentence is defined to be composed of at least 3 words, i.e., a sentence including an opinion word in ${\pm}2$ distance from the attribute name (e.g., the 'battery' of a camera) of a evaluated product (e.g., a 'camera'). In the performance experiment, the precision of those opinion words for 8 previously given attribute names were automatically extracted and estimated for 1,868 product reviews collected from major domestic shopping malls, by using k-Structure. The results showed that k=5 led to a recall of 79.0% and a precision of 87.0%; while k=8 led to a recall of 92.35% and a precision of 89.3%. Also, a test was conducted using PMI-IR (Pointwise Mutual Information - Information Retrieval) out of those methods suggested in English studies, which resulted in a recall of 55% and a precision of 57%.
Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
Journal of Intelligence and Information Systems
/
v.26
no.1
/
pp.97-117
/
2020
Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.
We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.