• Title/Summary/Keyword: wood rot fungi

Search Result 108, Processing Time 0.023 seconds

On Possible Application of Microorganism for Chemical Pulping (화학(化學)펄프 제조(製造)에 미생물(微生物)의 응용(應用) 가능성(可能性))

  • Lee, Seon-Ho;Yoon, Byong-Ho;Lee, Won-Yong
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.143-152
    • /
    • 1997
  • The decayed wood by Fomes pini (Thore) Lloyd required a smaller H factor than the sound wood for pulping to permanganate number 20. The H factors for the decayed wood pulping by the kraft and soda processes were reduced by 15% and 17%, respectively, in the presence of 1% anthraquinone. The wood components degraded by fungi are normally more readily solubilized in alkali than the corresponding components in sound wood. The nonphenolic ${\beta}$-O-4 type lignin model compound, veratrylglycerol-${\beta}$-guaiacyl ether(I), and phenolic model compound, syringylglycerol-${\beta}$-syringyl ether(III), were degraded by the white-rot fungi to yield ${\alpha}$-guaiacoxy-${\beta}$-hydroxypropioveratrone(II) from the former and ${\alpha}$-syringyloxy-${\beta}$-hydroxypropiosyringone(IV) from the latter. Structures of the degradation products indicated that C ${\alpha}$-oxidation could occur with white-rot fungi. It has been shown that the alkaline cleavage of ${\beta}$-aryl ether bonds in the lignin units is accelerated by the presence of ${\alpha}$-carbonyl groups.

  • PDF

Distribution and Preservative Effectiveness of Resin Element in Pine Wood Impregnated with Monoethylene Glycol Resin Solution (Monoethylene Glycol계(系) 수지액(收支液)을 주입(注入)한 소나무재(材)에 있어서 수지성분(樹脂成分)의 분포(分布)와 방부효과(防腐效果))

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 1995
  • With the aim to utilize pine wood(Pinus densiflora Sieb. et Zucc.) as an interior building materials, such as flooring material, monoethylene glycol(MEG) resin solution was impregnated into greenwood. Specimens of three different qualities, that is, normal wood, resinous wood and compression wood, were prepared. Distribution of resin element(phosphorus) in MEG resin solution-impregnated woods and preservative effectiveness against brown rot fungi(Tyromyces palustris and Serpula lacrymans) of these woods were investigated. The results were as follows: 1. The concentration of phosphorus into cell walls of resinous wood and compression wood was lower compared to that of normal wood. This shows that the quality of wood has an influence on the penetration of MEG resin solution into the wood. It was shown from a leaching test that MEG resin could be leached out easily from the cell walls. 2. The resinous wood and compression wood, even without MEG resin solution impregnation had high decay resistance. For normal wood, significant improvement of preservative effectiveness was observed after impregnation of MEG resin solution. It was shown that MEG resin was leached out from the woods after leaching test, resulting in the reduction of preservative effectiveness. From this result, suitability of MEG resin solution-impregnated woods as an interior materials was recognized.

  • PDF

Production of Mn-Dependent Peroxidase from Bjerkandera fumosa and Its Enzyme Characterization

  • Jarosz-Wilkolazka, Anna;Luterek, Jolanta;Malarczyk, Elzbieta;Leonowicz, Andrzej;Cho, Hee-Yeon;Shin, Soo-Jeong;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2007
  • Manganese dependent peroxidase (MnP) is the most ubiquitous enzyme produced by white-rot fungi, MnP is known to be involved in lignin degradation, biobleaching and oxidation of hazardous organopollutants. Bjerkandera fumosa is a nitrogen-unregulated white-rot fungus, which produces high amounts of MnP in the excess of N-nutrients due to increased biomass yield. The objective of this study was to optimize the MnP production in N-sufficient cultures by varying different physiological factors such as Mn concentration, culture pH, and incubation temperature. The growth of fungus was optimal in pH 4.5 at $30^{\circ}C$, $N_2$-unregulated white-rot fungus produces high amounts of MnP in the excess N-nutrients. The fungus produced the highest level of MnP (up to $1000U/{\ell}$) with $0.25g/{\ell}$ asparagine and $1g/{\ell}$ $NH_4Cl$ as N source at 1.5 mM $MnCl_2$ concentration, pH value of 4.5 at $30^{\circ}C$. Purification of MnP revealed the existence of two isoforms: MnPl and MnP2. The molecular masses of the purified MnPl and MnP2 were in the same range of 42~45 kDa. These isoforms of B. fumosa strictly require Mn to oxidize phenolic substrates. Concerned to kinetic constants of B. fumosa MnPs, B. fumosa has similar Km value and Vmax compared to the other white-rot fungi.

Selection of White Rot Fungi for Biodegradation of Polychlorinated Biphenyl, and Analysis of Its Biodegradation Rate (폴리염화비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석)

  • Hong, Chang-Young;Gwak, Ki-Seob;Lee, Su-Yeon;Kim, Seon-Hong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.568-578
    • /
    • 2010
  • In this study, the possibility of biodegradation of polychlorinated biphenyls (PCBs) by various white rot fungi was evaluated, and outstanding white rot fungi for the degradation of PCBs were selected. Seven white rot fungi were used to degrade Aroclor 1254 and 1260, which are widely considered to be toxic and difficult to degrade. And the degradation rates of Aroclors by selected white rot fungi were performed by GC analysis. Through the resistance test of white rot fungi on different concentrations of PCBs, the inhibition of mycelial growth of Cystidodontia isubellina was much less than that of others, and this fungus grew faster than others, relatively. Based on this result, it was considered that C. isubellina was selected as degrading fungus for Aroclors. As a result of biodegradation rate of Aroclors by Cystidodontia isubellina, the degradation rate of Arolor 1254 was reached to 57.57% in 13 days, which showed very high degradation rate. Also the degradation rate of Aroclor 1260 by C. isubellina had a tendency of increasing along with increasing incubation day. Maximal degradation rate of Aroclor 1260 was 49.43% at 13 days. Based on this results, it indicated that in comparison with a previous study, high degradation rate was obtained by C. isubellina.

Screening of Wood-Rotting Fungi for Efficient Decolorization of Draft Pulp Bleaching Effluents

  • Lee, Seon-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.95-100
    • /
    • 1999
  • In order to find fungi having high treatment activity of kraft pulp bleaching (E1) effluent without any additional nutrietns, 124 strains of white-rot fungi were isolated from decayed wood samples. The author isolated five fungi(KS-62, MZ-400 , YK-719, YK-472 and Phanerochaete sordida YK-624) having high-decolorization activity of the E1 effluent. Particularly, the fugus KS-62 show the high effect of the decolorization and the degradation of the chlorinated lignin in the E1 , effluent compared with Coriolus versicolor and Phanerochaete chrysosporium.

  • PDF

Effect of Cadium Ions on the Activity of Fungal Laccase and Its Decolorization of Dye, RBBR

  • Jarosz-Wilkolazka, A.;Malarczyk, E.;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.14-22
    • /
    • 2004
  • The effect of cadmium ions on ligninolytic and decolourizing activities in cultures of two white-rot fungi, Cerrena unicolor and Trametes versicolor, were examined. Cadmium was added to the shallow stationary cultures growing on a liquid mineral medium. Both examined strains sorbed Cd ions in the first 24 hr of incubation. An appreciable stimulation of the activity of extracellular laccase (LAC) and inhibition of the extracellular manganese-dependent peroxidase (MnP) were simultaneously observed when 25 mgL-1 and 50 mgL-1 of cadmium ions were added to the cultures. On the other hand, the addition of cadmium ions also resulted in stimulating the decolorization activity of C. unicolor to decolorize Remazol Brilliant Blue R (RBBR) in the cultures, but decreasing it in the culture of T. versicolor, which is compared to the inhibition of MnP activity in this fungus. Our data indicate that the presence of Cd(II) ions can affect the ligninolytic activity of white-rot fungi. It was found that C. unicolor is a strain resistant to the presence of Cd ions in the liquid culture media, and has a potential to use this strain for bioremediation of sites contaminated with both heavy metals and aromatic pollutants.

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems (Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별)

  • Hong, Chang-Young;Kim, Ho-Yong;Jang, Soo-Kyeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.

Biotransformation of (-)-α-Pinene by Whole Cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum

  • Lee, Su-Yeon;Kim, Seon-Hong;Hong, Chang-Young;Kim, Ho-Young;Ryu, Sun-Hwa;Choi, In-Gyu
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.297-302
    • /
    • 2015
  • Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-${\alpha}$-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-${\alpha}$-pinene into ${\alpha}$-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-${\alpha}$-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.