DOI QR코드

DOI QR Code

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems

Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별

  • Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Ho-Yong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jang, Soo-Kyeong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 홍창영 (서울대학교 농업생명과학대학 산림과학부) ;
  • 김호용 (서울대학교 농업생명과학대학 산림과학부) ;
  • 장수경 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2012.11.12
  • Accepted : 2013.01.09
  • Published : 2013.01.25

Abstract

In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.

본 연구에서는 백색부후균의 리그닌 분해 효소 시스템을 이용하여, 다양한 균주 중에서 목질계 바이오매스 유기용매 전처리 과정에서 발생한 리그닌(유기용매 리그닌)의 생분해에 적합한 우수 균주를 선별하고자 하였다. 우선 분양받은 15개의 백색부후균을 대상으로 shallow stationary cultur (SSC)배지와 malt extract broth (MEB)배지에 유기용매 리그닌의 첨가에 따른 Remazol Brilliant Blue R (RBBR)의 흡광도 변화를 측정하였다. RBBR 탈색능 결과, SSC 배지에서 Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, Stereum hirsutum 등 6종의 백색부후균에서 급격한 흡광도 변화를 나타냈다. 배양 초기에 급격한 흡광도 변화를 나타낸 6개의 백색부후균을 대상으로 균체 외 단백질 농도 및 리그닌 분해 효소 활성을 측정하였다. 선발된 6개의 균 중에서 S. hirsutum과 P. chrysosporium은 유기용매 리그닌을 첨가한 실험구에서 높은 단백질 농도가 측정되었다. 반면, 리그닌 분해 효소 활성은 F. insularis에서 배양 6일째에 manganese peroxidase (MnP) 활성이 1,545 U/mg, laccase 활성은 1,259 U/mg으로 최고 활성을 나타냈다. 결론적으로, 균체 외 단백질 농도 및 리그닌 분해 효소 활성이 전반적으로 높았던 $STH^*$와 MnP 및 laccase의 활성이 가장 높은 FOI가 유기용매 리그닌 생분해에 유리하게 작용할 것으로 판단된다.

Keywords

References

  1. 장판식, 노봉수, 유상호, 김묘정, 김영완. 2010. 제6장 효소의 생산, 추출 및 정제. in: 이해하기 쉬운 식품효소공학, 수학사. 서울, 208-212.
  2. 홍창영, 곽기섭, 이수연, 김선홍, 최인규. 2010. 폴리염화 비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석. 목재공학, 38(6): 586-578.
  3. Baldrian, P. and J. Gabriel. 2006. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS microbiology letters, 206(1): 69-74.
  4. Beaudette, L. A., S. Davies, P. M. Fedorak, O. P. Ward, and M. A. Pickard. 1998. Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Applied and environmental microbiology, 64(6): 2020-2025.
  5. Bonnarme, P. and T. W. Jeffries. 1990. Mn (II) regulation of lignin peroxidases and manganesedependent peroxidases from lignin-degrading white rot fungi. Applied and environmental microbiology, 56(1): 210-217.
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Buswell, J. A., Y. Cai, and S. Chang. 1995. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS microbiology letters, 128(1): 81-87. https://doi.org/10.1111/j.1574-6968.1995.tb07504.x
  8. De Jong, E., F. P. De Vries, J. A. Field, R. P. van der Zwan, and J. A. M. de Bont. 1992. Isolation and screening of basidiomycetes with high peroxidative activity. Mycological Research, 96(12):1098-1104. https://doi.org/10.1016/S0953-7562(09)80121-4
  9. Faraco, V., P. Giardina, and G. Sannia. 2003. Metalresponsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149(8): 2155-2162. https://doi.org/10.1099/mic.0.26360-0
  10. Fenn, P., S. Choi, and T. K. Kirk. 1981. Ligninolytic activity of Phanerochaete chrysosporium: Physiology of suppression by $NH4^{+}$ and l-glutamate. Archives of Microbiology, 130(1): 66-71. https://doi.org/10.1007/BF00527074
  11. Fenn, P., and T. Kent Kirk. 1981. Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Archives of Microbiology, 130(1): 59-65. https://doi.org/10.1007/BF00527073
  12. Glenn, J. K., and M. H. Gold. 1983. Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and environmental microbiology, 45(6): 1741-1747.
  13. Hamelinck, C. N., G. Hooijdonk, and A. P. C. Faaij. 2005. Ethanol from lignocellulosic biomass: techno- economic performance in short-, middle-and long-term. Biomass and Bioenergy, 28(4): 384-410. https://doi.org/10.1016/j.biombioe.2004.09.002
  14. Hammel, K. E., K. A. Jensen Jr., M. D. Mozuch, L. L. Landucci, M. Tien, and E. A. Pease. 1993. Ligninolysis by a purified lignin peroxidase. Journal of Biological Chemistry, 268(17): 12274-12281.
  15. Hynes, M. 1974. Effects of ammonium, L-glutamate, and L-glutamine on nitrogen catabolism in Aspergillus nidulans. Journal of bacteriology, 120(3): 1116-1123.
  16. Keyser, P., T. Kirk, and J. Zeikus. 1978. Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of bacteriology, 135(3): 790-797.
  17. Krcmar, P., A. Kubatova, J. Votruba, P. Erbanova, Novotn, and V. Sasek. 1999. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor. World Journal of Microbiology and Biotechnology, 15(2): 269-276. https://doi.org/10.1023/A:1008994912875
  18. Lee, S. 2005. Biodegradation of Dibutyl and Di (2-ethylhexyl) Phthalates by White Rot Fungus, Polyporus brumalis. in: Department of forest sciences, Vol. Ph. D. Thesis, Seoul National University. Seoul.
  19. Lee, S. M., J. W. Lee, B. W. Koo, M. K. Kim, D. H. Choi, and I. G. Choi. 2007. Dibutyl phthalate biodegradation by the white rot fungus, Polyporus brumalis. Biotechnology and bioengineering, 97(6): 1516-1522. https://doi.org/10.1002/bit.21333
  20. Machado, K. M. G., D. R. Matheus, V. L. R. Bononi, 2005. Ligninolytic enzymes production and remazol brilliant blue R decolorization by tropical brazilian basidiomycetes fungi. Brazilian Journal of microbiology, 36(3): 246-252. https://doi.org/10.1590/S1517-83822005000300008
  21. Martinez, A. T., M. Speranza, F. J. Ruiz Duenas, P. Ferreira, S. Camarero, F. Guillen, M. J. Martinez, A. Gutierrez, and J. C. Río, 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International microbiology, 8(3): 195-204.
  22. Mason, J. E. 2007. World energy analysis: $H_{2}$ now or later? Energy Policy, 35(2): 1315-1329. https://doi.org/10.1016/j.enpol.2006.03.024
  23. Nerud, F., Z. Zouchova, and Z. Misurcova, 1991. Ligninolytic properties of different white‐rot fungi. Biotechnology letters, 13(9): 657-660. https://doi.org/10.1007/BF01086322
  24. Novotny, C., B. Rawal, M. Bhatt, M. Patel, V. Sasek, and H. P. Molitoris. 2001. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes. Journal of biotechnology, 89(2): 113-122. https://doi.org/10.1016/S0168-1656(01)00321-2
  25. Pointing, S. 2001. Feasibility of bioremediation by white‐rot fungi. Applied microbiology and biotechnology, 57(1): 20-33. https://doi.org/10.1007/s002530100745
  26. Sahoo, S., M. O. Seydibeyoglu, A. Mohanty, M. Misra. 2011. Characterization of industrial lignins for their utilization in future value added applications. Biomass and bioenergy, 35(10): 4230-4237. https://doi.org/10.1016/j.biombioe.2011.07.009
  27. Schmidt, O. 2006. Wood cell wall degradation. in: Wood and Tree fungi (Ed.) D. Czeschlik, Springer ‐Verlag Berlin Heidelberg, pp. 99-107.
  28. Stewart, D. 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial crops and products, 27(2): 202-207. https://doi.org/10.1016/j.indcrop.2007.07.008
  29. Tekere, M., A. Mswaka, R. Zvauya, J. Read. 2001. Growth, dye degradation and ligninolytic activ ity studies on Zimbabwean white rot fungi. Enzyme and Microbial technology, 28(4): 420-426. https://doi.org/10.1016/S0141-0229(00)00343-4
  30. Tien, M. 1987. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Critical reviews in microbiology, 15(2): 141-168. https://doi.org/10.3109/10408418709104456
  31. Vyas, B., H. P. Molitoris. 1995. Involvement of an extracellular $H_{2}O_{2}$-dependent ligninolytic activity of the white rot fungus Pleurotus ostreatus in the decolorization of Remazol brilliant blue R. Applied and environmental microbiology, 61(11): 3919∼3927.
  32. Wariishi, H., K. Valli, and M. H. Gold. 1991. depolymerization of lignin by manganese peroxidase of. Biochemical and biophysical research communications, 176(1): 269-275. https://doi.org/10.1016/0006-291X(91)90919-X
  33. Wong, D. W. S. 2009. Structure and action mechanism of ligninolytic enzymes. Applied biochemistry and biotechnology, 157(2): 174-209. https://doi.org/10.1007/s12010-008-8279-z

Cited by

  1. Biomodification of Ethanol Organolsolv Lignin by Abortiporus biennis and Its Structural Change by Addition of Reducing Agent vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.124