References
- Weiss EA. Essential oil crops. Wallingford: CAB International; 1997.
- Van der Werf MJ, de Bont JA, Leak DJ. Opportunities in microbial biotransformation of monoterpenes. In: Berger RG, Babel W, Blanch HW, Cooney CL, Enfors SO, Eriksson EL, Fiechter A, Klibanov AM, Mattiasson B, Primrose SB, et al., editors. Biotechnology of aroma compounds. Berlin: Springer-Verlag;1997. p. 147-77.
- De Carvalho CC, Da Fonseca MM. Biotransformation of terpenes. Biotechnol Adv 2006;24:134-42. https://doi.org/10.1016/j.biotechadv.2005.08.004
- Abraham B, Onken JG, Berger RG. Strategies toward an efficient biotechnology of aromas. In: Proceedings of the 5th Wartburg Aroma Symposium, Flavour perception-aroma evaluation; 1997 Mar 17-20; Eisenach, Germany. Potsdam: Universitat Potsdam, Bergholz-Rehbrucke; 1997. p. 357-73.
- Abraham BG, Berger RG. Higher fungi for generating aroma components through novel biotechnologies. J Agric Food Chem 1994;42:2344-8. https://doi.org/10.1021/jf00046a050
- Kirk TK. Effects of microorganisms on lignin. Annu Rev Phytopathol 1971;9:185-210. https://doi.org/10.1146/annurev.py.09.090171.001153
- Kirk TK, Farrell RL. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 1987;41:465-505. https://doi.org/10.1146/annurev.mi.41.100187.002341
- Tzialla AA, Taha AA, Kalogeris E, Stamatis H. Improving the catalytic performance of fungal laccases in monoterpenebased reaction systems. Biotechnol Lett 2009;31:1451-6. https://doi.org/10.1007/s10529-009-0014-5
- Christenson PA, Labuda IM, Rongmin H. Production of natural flavours by laccase catalysis. European patent 1083233. 2001 Mar 14.
- Haider K. Biochemie des Bodens. Stuttgart: Enke; 1996.
- Burton SG. Oxidizing enzymes as biocatalysts. Trends Biotechnol 2003;21:543-9. https://doi.org/10.1016/j.tibtech.2003.10.006
-
Prema BR, Bhattacharyya PK. Microbiological transformation of terpenes. II. Transformation of
$\alpha$ -pinene. Appl Microbiol 1962;10:524-8. - Ohloff G. Scent and fragrances: the fascination of odors and their chemical perspectives. Berlin: Springer-Verlag; 1994.
- Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL. Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 1986;8:27-32. https://doi.org/10.1016/0141-0229(86)90006-2
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
- Urek RO, Pazarlioglu NK. Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem 2004;39:2061-8. https://doi.org/10.1016/j.procbio.2003.10.015
- Shin KS, Lee YJ. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch Biochem Biophys 2000;384:109-15. https://doi.org/10.1006/abbi.2000.2083
- Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 1988;161:238-49. https://doi.org/10.1016/0076-6879(88)61025-1
- Bosset JO, Gauch R, Mariaca R, Klein B. Comparison of various sample treatments for the analysis of volatile compounds by GC-MS: application to the Swiss Emmental cheese. Mitt Geb Lebensmittelunters Hyg 1995;86:672-98.
-
Van Dyk MS, Van Rensburg E, Moleleki N. Hydroxylation of (+) limonene, (-)
$\alpha$ -pinene and (-)$\beta$ -pinene by a Hormonema sp. Biotechnol Lett 1998;20:431-6. https://doi.org/10.1023/A:1005399918647 - Busmann D, Berger RG. Conversion of myrcene by submerged cultured basidiomycetes. J Biotechnol 1994;37:39-43. https://doi.org/10.1016/0168-1656(94)90200-3
- Holland HL. Organic synthesis with oxidative enzymes. Weinheim: Wiley-VCH; 1992.
-
Tan Q, Day DF. Bioconversion of limonene to
$\alpha$ -terpineol by immobilized Penicillium digitatum. Appl Microbiol Biotechnol 1998;49:96-101. https://doi.org/10.1007/s002530051143 - Welsh FW, Murray WD, Williams RE, Katz I. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit Rev Biotechnol1989;9:105-69.
-
Marostica MR Jr, Pastore GM. Production of R-(+)-
$\alpha$ -terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 2007;101:345-50. https://doi.org/10.1016/j.foodchem.2005.12.056 - Tan Q, Day DF, Cadwallader KR. Bioconversion of (R)-(+)-limonene by P. digitatum (NRRL 1202). Process Biochem 1998;33:29-37. https://doi.org/10.1016/S0032-9592(97)00048-4
-
Kraidman G, Mukherjee BB, Hill ID. Conversion of Dlimonene into an optically active isomer of
$\alpha$ -terpineol by a Cladosporium species. J Bacteriol 1969;63:12-8. - Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T. Stereoselective biotransformation of limonene and limonene oxide by cyanobacterium, Synechococcus sp. PCC 7942. J Biosci Bioeng 2003;96:581-4. https://doi.org/10.1016/S1389-1723(04)70154-1
-
Savithiry N, Cheong TK, Oriel P. Production of
$\alpha$ -terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl Biochem Biotechnol 1997;63-65:213-20. https://doi.org/10.1007/BF02920426 - Wright SJ, Caunt P, Carter D, Baker PB. Microbial oxidation of alpha-pinene by Serratia marcescens. Appl Microbiol Biotechnol 1986;23:224-7.
-
Shukla OP, Bhattacharyya PK. Microbiological transformation of terpenes. Part XI. Pathways of degradation of
$\alpha$ - and$\beta$ -pinenes in a soil pseudomonad (PL strain). Indian J Biochem 1968;5:92-101. -
Narushima H, Omori T, Minoda Y. Microbial transformation of
$\alpha$ -pinene. Eur J Appl Microbiol Biotechnol 1982;16:174-8. https://doi.org/10.1007/BF00505828 - Faldt J, Jonsell M, Nordlander G, Borg-Karlson AK. Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 1999;25:567-90. https://doi.org/10.1023/A:1020958005023
- Mau JL, Chyau CC, Li JY, Tseng YH. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem 1997;45:4726-9. https://doi.org/10.1021/jf9703314
- Tressl R, Bahri D, Engel KH. Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 1982;30:89-93. https://doi.org/10.1021/jf00109a019
- Husson F, Thomas M, Kermasha S, Belin JM. Effect of linoleic acid induction on the production of 1-octen-3-ol by the lipoxygenase and hydroperoxide lyase activities of Penicillium camemberti. J Mol Catal B Enzym 2002;19-20:363-9. https://doi.org/10.1016/S1381-1177(02)00187-X
- Andrews RE, Parks LW, Spence KD. Some effects of Douglas fir terpenes on certain microorganisms. Appl Environ Microbiol 1980;40:301-4.
- Sikkema J, De Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201-22.
- Kantelinen A, Hatakka A, Viikari L. Production of lignin peroxidase and laccase by Phlebia radiata. Appl Microbiol Biotechnol 1989;31:234-9.
- Jonsson L, Johansson T, Sjostrom K, Nyman PO. Purification of ligninase isozymes from the white-rot fungus Trametes versicolor. Acta Chem Scand Ser B 1987;41:766-9.
- Waldner R, Leisola MS, Fiechter A. Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 1988;29:400-7. https://doi.org/10.1007/BF00265826
- Jager A, Croan S, Kirk TK. Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 1985;50:1274-8.