DOI QR코드

DOI QR Code

Biotransformation of (-)-α-Pinene by Whole Cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum

  • Lee, Su-Yeon (Division of Wood Chemistry & Microbiology, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Kim, Seon-Hong (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Hong, Chang-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Ho-Young (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Ryu, Sun-Hwa (Division of Wood Chemistry & Microbiology, Department of Forest Resources Utilization, Korea Forest Research Institute) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2015.03.20
  • Accepted : 2015.08.01
  • Published : 2015.09.30

Abstract

Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-${\alpha}$-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-${\alpha}$-pinene into ${\alpha}$-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-${\alpha}$-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.

Keywords

References

  1. Weiss EA. Essential oil crops. Wallingford: CAB International; 1997.
  2. Van der Werf MJ, de Bont JA, Leak DJ. Opportunities in microbial biotransformation of monoterpenes. In: Berger RG, Babel W, Blanch HW, Cooney CL, Enfors SO, Eriksson EL, Fiechter A, Klibanov AM, Mattiasson B, Primrose SB, et al., editors. Biotechnology of aroma compounds. Berlin: Springer-Verlag;1997. p. 147-77.
  3. De Carvalho CC, Da Fonseca MM. Biotransformation of terpenes. Biotechnol Adv 2006;24:134-42. https://doi.org/10.1016/j.biotechadv.2005.08.004
  4. Abraham B, Onken JG, Berger RG. Strategies toward an efficient biotechnology of aromas. In: Proceedings of the 5th Wartburg Aroma Symposium, Flavour perception-aroma evaluation; 1997 Mar 17-20; Eisenach, Germany. Potsdam: Universitat Potsdam, Bergholz-Rehbrucke; 1997. p. 357-73.
  5. Abraham BG, Berger RG. Higher fungi for generating aroma components through novel biotechnologies. J Agric Food Chem 1994;42:2344-8. https://doi.org/10.1021/jf00046a050
  6. Kirk TK. Effects of microorganisms on lignin. Annu Rev Phytopathol 1971;9:185-210. https://doi.org/10.1146/annurev.py.09.090171.001153
  7. Kirk TK, Farrell RL. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 1987;41:465-505. https://doi.org/10.1146/annurev.mi.41.100187.002341
  8. Tzialla AA, Taha AA, Kalogeris E, Stamatis H. Improving the catalytic performance of fungal laccases in monoterpenebased reaction systems. Biotechnol Lett 2009;31:1451-6. https://doi.org/10.1007/s10529-009-0014-5
  9. Christenson PA, Labuda IM, Rongmin H. Production of natural flavours by laccase catalysis. European patent 1083233. 2001 Mar 14.
  10. Haider K. Biochemie des Bodens. Stuttgart: Enke; 1996.
  11. Burton SG. Oxidizing enzymes as biocatalysts. Trends Biotechnol 2003;21:543-9. https://doi.org/10.1016/j.tibtech.2003.10.006
  12. Prema BR, Bhattacharyya PK. Microbiological transformation of terpenes. II. Transformation of $\alpha$-pinene. Appl Microbiol 1962;10:524-8.
  13. Ohloff G. Scent and fragrances: the fascination of odors and their chemical perspectives. Berlin: Springer-Verlag; 1994.
  14. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL. Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 1986;8:27-32. https://doi.org/10.1016/0141-0229(86)90006-2
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Urek RO, Pazarlioglu NK. Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium. Process Biochem 2004;39:2061-8. https://doi.org/10.1016/j.procbio.2003.10.015
  17. Shin KS, Lee YJ. Purification and characterization of a new member of the laccase family from the white-rot basidiomycete Coriolus hirsutus. Arch Biochem Biophys 2000;384:109-15. https://doi.org/10.1006/abbi.2000.2083
  18. Tien M, Kirk TK. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 1988;161:238-49. https://doi.org/10.1016/0076-6879(88)61025-1
  19. Bosset JO, Gauch R, Mariaca R, Klein B. Comparison of various sample treatments for the analysis of volatile compounds by GC-MS: application to the Swiss Emmental cheese. Mitt Geb Lebensmittelunters Hyg 1995;86:672-98.
  20. Van Dyk MS, Van Rensburg E, Moleleki N. Hydroxylation of (+) limonene, (-) $\alpha$-pinene and (-) $\beta$-pinene by a Hormonema sp. Biotechnol Lett 1998;20:431-6. https://doi.org/10.1023/A:1005399918647
  21. Busmann D, Berger RG. Conversion of myrcene by submerged cultured basidiomycetes. J Biotechnol 1994;37:39-43. https://doi.org/10.1016/0168-1656(94)90200-3
  22. Holland HL. Organic synthesis with oxidative enzymes. Weinheim: Wiley-VCH; 1992.
  23. Tan Q, Day DF. Bioconversion of limonene to $\alpha$-terpineol by immobilized Penicillium digitatum. Appl Microbiol Biotechnol 1998;49:96-101. https://doi.org/10.1007/s002530051143
  24. Welsh FW, Murray WD, Williams RE, Katz I. Microbiological and enzymatic production of flavor and fragrance chemicals. Crit Rev Biotechnol1989;9:105-69.
  25. Marostica MR Jr, Pastore GM. Production of R-(+)-$\alpha$-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 2007;101:345-50. https://doi.org/10.1016/j.foodchem.2005.12.056
  26. Tan Q, Day DF, Cadwallader KR. Bioconversion of (R)-(+)-limonene by P. digitatum (NRRL 1202). Process Biochem 1998;33:29-37. https://doi.org/10.1016/S0032-9592(97)00048-4
  27. Kraidman G, Mukherjee BB, Hill ID. Conversion of Dlimonene into an optically active isomer of $\alpha$-terpineol by a Cladosporium species. J Bacteriol 1969;63:12-8.
  28. Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T. Stereoselective biotransformation of limonene and limonene oxide by cyanobacterium, Synechococcus sp. PCC 7942. J Biosci Bioeng 2003;96:581-4. https://doi.org/10.1016/S1389-1723(04)70154-1
  29. Savithiry N, Cheong TK, Oriel P. Production of $\alpha$-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl Biochem Biotechnol 1997;63-65:213-20. https://doi.org/10.1007/BF02920426
  30. Wright SJ, Caunt P, Carter D, Baker PB. Microbial oxidation of alpha-pinene by Serratia marcescens. Appl Microbiol Biotechnol 1986;23:224-7.
  31. Shukla OP, Bhattacharyya PK. Microbiological transformation of terpenes. Part XI. Pathways of degradation of $\alpha$- and $\beta$-pinenes in a soil pseudomonad (PL strain). Indian J Biochem 1968;5:92-101.
  32. Narushima H, Omori T, Minoda Y. Microbial transformation of $\alpha$-pinene. Eur J Appl Microbiol Biotechnol 1982;16:174-8. https://doi.org/10.1007/BF00505828
  33. Faldt J, Jonsell M, Nordlander G, Borg-Karlson AK. Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 1999;25:567-90. https://doi.org/10.1023/A:1020958005023
  34. Mau JL, Chyau CC, Li JY, Tseng YH. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. J Agric Food Chem 1997;45:4726-9. https://doi.org/10.1021/jf9703314
  35. Tressl R, Bahri D, Engel KH. Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 1982;30:89-93. https://doi.org/10.1021/jf00109a019
  36. Husson F, Thomas M, Kermasha S, Belin JM. Effect of linoleic acid induction on the production of 1-octen-3-ol by the lipoxygenase and hydroperoxide lyase activities of Penicillium camemberti. J Mol Catal B Enzym 2002;19-20:363-9. https://doi.org/10.1016/S1381-1177(02)00187-X
  37. Andrews RE, Parks LW, Spence KD. Some effects of Douglas fir terpenes on certain microorganisms. Appl Environ Microbiol 1980;40:301-4.
  38. Sikkema J, De Bont JA, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995;59:201-22.
  39. Kantelinen A, Hatakka A, Viikari L. Production of lignin peroxidase and laccase by Phlebia radiata. Appl Microbiol Biotechnol 1989;31:234-9.
  40. Jonsson L, Johansson T, Sjostrom K, Nyman PO. Purification of ligninase isozymes from the white-rot fungus Trametes versicolor. Acta Chem Scand Ser B 1987;41:766-9.
  41. Waldner R, Leisola MS, Fiechter A. Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 1988;29:400-7. https://doi.org/10.1007/BF00265826
  42. Jager A, Croan S, Kirk TK. Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 1985;50:1274-8.