• 제목/요약/키워드: wood modification

검색결과 69건 처리시간 0.021초

Challenges of Wood Modification Process for Plantation Eucalyptus: A Review of Australian Setting

  • GHANI, Ros Syazmini Mohd;LEE, Man Djun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.191-209
    • /
    • 2021
  • Australia has significant wood resources in its native forest, but the resource available for harvest becomes lesser due to the conversion of native forest to conservation reserves. The natural occurrences of bushfires, droughts, and cyclones are highly destructive, making the situation worse. The shortage of wood resources is having a significant negative impact on Australia because wood is so scarce that they cannot meet domestic demands, especially durable wood. Australia cleared approximately 100 million hectares of its land to establish forest plantations, and two million trees were planted. However, most of these plantations are for pulpwood production; however, their application for high-value products is limited due to their undesirable properties. Wood modification is a process of improving unfavorable wood properties to be utilized for a wide range of applications. Australia has not adopted any of these modification processes; it still depends on the less toxic wood preservative to treat wood. This study focuses on the recent advancement in industrial wood modification worldwide and how it may be used to modify Eucalyptus wood for high-value applications. The opportunities and suggestions for Eucalyptus wood modification in Australia will be discussed. Before the study concludes, the future of commercial wood modification for Eucalyptus plantation in Australia will also be presented.

Preparation and Characterization of Chemically Modified Wood Flour Reinforced Phenol-formaldehyde Composites

  • Nam, Byeong-Uk;Mun, Jun-Yeong
    • 반도체디스플레이기술학회지
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2018
  • Wood Polymer Composites(WPC) have attracted significant attention because of ecological and environmental concerns. However, the structure of Wood Flour containing many hydroxyl groups(-OH) reduces the interface adhesion to Phenol-formaldehyde(PF) and it decreases the mechanical properties of the PF/Wood Flour Composites. The present work involves the modification of Wood Flour using silanes reinforced with Phenol-formaldehyde to enhance the mechanical properties of the composites. The spectroscopic properties of the composites were analyzed using FT-IR, XPS(X-ray Photoelectron Spectroscopy) and the mechanical properties i.e., tensile strength, flexural strength and impact strength were studied. We confirmed the modification effect of silanes by spectroscopic analysis, and the mechanical properties of the composites using wood flour modified by silanes were significantly improved.

아세칠화 WPC 이중개질처리에 의한 전통창호 소나무재의 물성 개선 (Wood Modification of Pinus densiflora Sieb, et Zucc. for korean traditional latticework by combined treatment of Acetylation followed by Styren-Methyl metacrylate impregnation)

  • 이화형;이민경
    • 한국가구학회지
    • /
    • 제14권1호
    • /
    • pp.11-20
    • /
    • 2003
  • Wood cell-wall modification with acetic anhydride, lumen filled with styren monomer and methyl methacrylate, and a combination of these two treatments were studied for their effectiveness for dimensional stability. Compared to those of untreated Pinus densiflora Sieb. et Zucc and sole acetylated red pine, The combination of acetylation and impregnation with methy methacrylate greatly reduced water absorption, increased ASE to the best and gave better bending strength and compression strength.

  • PDF

The Effect of Cellulase on the Pore Structure of Cellulose Fibers

  • Park, Sun-Kyu;Venditti Richard A.;Abrecht David G.;Jameel Hasan;Pawlak Joel J.;Lee, Jung-Myoung
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.43-49
    • /
    • 2006
  • The surface and pore structure of cellulose fibers have a significant impact on the properties and performance in applications. Cellulase enzymatic hydrolysis of cellulose fibers can result in changes to the surface and pore structure thus providing a useful tool for fiber modification. This research characterizes these changes using various test methods such as fiber dimension, water retention value, hard-to-remove water content, freezing and non-freezing bound water content, polymer adsorption, and crystallinity index. For a high-dosage enzyme treatment (0.10 g/g), the fiber length was significantly decreased and the fibers were 'cut' in the cross direction, not in the axial direction. The swelling capacities as measured by the WRV and HR water content increased for the high-dosage treatment. Three independent measurements (non-freezing bound water, polymer adsorption, and crystallinity index) are in good agreement with the statement that the amorphous regions of cellulose fibers are a more readily available substrate relative to crystalline regions. Based on the experimental results obtained herein, a model was proposed to explain surface and pore structure modification of cellulose fibers via enzymatic treatment.

  • PDF

Crystallinity of Low Molar Ratio Urea-Formaldehyde Resins Modified with Cellulose Nanomaterials

  • PARK, Seongsu;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권2호
    • /
    • pp.169-180
    • /
    • 2021
  • Inherent crystalline domains present in low formaldehyde to urea (F/U) molar ratio urea-formaldehyde (UF) resins are responsible for their poor adhesion in wood-based composite panels. To modify the crystallinity of low molar ratio (LMR) UF resins, this study investigates the additional effect of cellulose nanomaterials (CNMs), such as cellulose microfibrils (CMFs), cellulose nanofibrils (CNFs), and TEMPO-oxidized CNFs (TEMPO-CNFs) on the crystallinity of modified LMR UF resins. First, two modification methods (post-mixing and in situ) were compared for modified LMR UF resins with TEMPO-CNFs. The modified UF resins with TEMPO-CNFs decreased the nonvolatile solid contents, while increasing the viscosity and gel time. However, the in situ modification of UF resins with TEMPO-CNFs showed lower crystallinity than that of post-mixing. Then, the in situ method was compared for all CNMs to modify LMR UF resins. The modified UF resins with CMFs using the in situ method increased nonvolatile solid contents and viscosity but decreased the gel time. The crystallinity of UF resins modified with TEMPO-CNFs was the lowest even though the crystalline domains were not significantly changed for all modified UF resins. These results suggest that these CNMs should be modified to prevent the formation of crystalline domains in LMR UF resins.

2-메타크릴로일옥시에틸 이소시아네이트에 의한 삼나무재의 화학처리 (Chemical Modification of Japanese Cedar with 2-Methacryloyloxyethyl Isocyanate)

  • 한규성;세토야마 코우이치
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권1호
    • /
    • pp.36-41
    • /
    • 2000
  • 목재는 2-메타크릴로일옥시에틸 이소시아네이트(MOI)와 $50-60^{\circ}C$에서 촉매존재하에서 매우 쉽게 반응하였다. 적외선 분광분석을 통하여, 목재가 MOI와 우레탄결합($1715cm^{-1}$)를 형성하고 있을 뿐만 아니라, 올레핀구조의 탄소간 이중결합 ($1635cm^{-1}$)이 존재하고 있음이 밝혀졌다. 도입된 메타크릴산기는 다른 비닐모노머와의 그래프트공중합시 반응시점으로 작용할 것이다. 또한 MOI처리목재는, MOI와의 반응에 의해 친수성이던 목재의 표면이 소수화되어 접촉각이 증대되는 결과를 낳았다. X선광전자분광분석(XPS)의 결과, 목재의 표면부위의 대부분은 MOI에 의해 개질되었음을 밝혀졌다.

  • PDF

폐목재(廢木材) 활용(活用)을 위한 플라즈마 처리(處理) 효과(效果)에 대한 연구(硏究) (A Study on Effect of Plasma Treatment for Waste Wood Application)

  • 김미미;임중연
    • 자원리싸이클링
    • /
    • 제22권2호
    • /
    • pp.18-21
    • /
    • 2013
  • 본 실험에서는 상압플라즈마에 의한 목분의 표면개질에 대해 조사하였다. 복합재는 목분과 폴리프로필렌을 이용하여 제작되었다(목분 : 폴리프로필렌=55wt% : 45wt%). 상압플라즈마는 carrier gas로 헬륨과 HMDSO를 모노머로 사용하였고 3 KV, $17{\pm}1$KHz, 2 g/min의 조건에서 처리하였다. 폐목분의 인장강도는 상압플라즈마 처리를 통해 18.5 MPa에서 21.2 MPa로 14.6% 증가하였고 단일수종목분의 경우에도 21.5 MPa에서 23.4 MPa로 8.8% 증가하였다. 이것으로 상압플라즈마 처리는 목분의 표면을 개질하여 폴리프로필렌과의 계면결합력을 증가시켜주는 것을 확인하였다.

액화목재복합체(LWPC)의 제조 및 물성 (Preparation and Properties of Liquefied-Wood Polymer Composite)

  • 김철현;김강재;엄태진
    • Current Research on Agriculture and Life Sciences
    • /
    • 제27권
    • /
    • pp.29-33
    • /
    • 2009
  • Liquefied-wood polymer composite was prepared and mechanical properties was evaluated to develop potential utility of liquefied wood. The liquefied wood was made from waste wood and chemical modified with acetic anhydride and maleic anhydride (MA), phtalic anhydride (PA). The composite sheet was prepared from modified liquefied-wood and polymer(PE). The mechanical, chemical and microscopical properties composite sheet were investigated. The results were summarized as follows, 1. The tensile strength was increased and breaking elongation of composite sheet was decreased with the time of acetylation and the dosage of MA. 2. The Young's modulus of composite sheet was gradually decreased with the dosage of PA. 3. The peak intensity of 1737cm-1 in FT-IR spectra of chemical modified liquefied woods was increased. 4. The dispersity of liquefied woods with PE was improved with chemical modification.

  • PDF

Chemical Modification of Wood with Alkylene Oxides, Vinylpirrolidinone and Furans:Effects on Dimensional Stabilization

  • Guevara, R.;Moslemi, A.A.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제10권4호
    • /
    • pp.38-52
    • /
    • 1982
  • The effect of propylene oxide, butylene oxide, furan resin, and vinylpyrrolidinone in controlling wood dimensional stability have been examined. Wood in the green or ovendry condition was treated with various chemical treatments using a vacuum-pressure procedure, and treated specimens were tested for tangential sweelling, moisture gain, and changes in sorption hysteresis. Results' indicate that propylene oxide, and butylene oxide enhanced with the crosslin king agent trimethylol propane trimethacrylate and applied to ovendry wood were the most efficient chemical treatments in controlling tangential sweeling caused by liquid water or water vapor, and in reducing water vapor adsorption. The sorption behavior of treated wood as depicted by the ratios of sorption was "very favorable" in most instances. In the particular case of furan resin treatments, ratios of sorption were improved from 25 to 100 percent as compared to those of untreated wood.

  • PDF