DOI QR코드

DOI QR Code

Crystallinity of Low Molar Ratio Urea-Formaldehyde Resins Modified with Cellulose Nanomaterials

  • PARK, Seongsu (Department of Wood and Paper Science, Kyungpook National University) ;
  • PARK, Byung-Dae (Department of Wood and Paper Science, Kyungpook National University)
  • Received : 2021.01.13
  • Accepted : 2021.03.02
  • Published : 2021.03.25

Abstract

Inherent crystalline domains present in low formaldehyde to urea (F/U) molar ratio urea-formaldehyde (UF) resins are responsible for their poor adhesion in wood-based composite panels. To modify the crystallinity of low molar ratio (LMR) UF resins, this study investigates the additional effect of cellulose nanomaterials (CNMs), such as cellulose microfibrils (CMFs), cellulose nanofibrils (CNFs), and TEMPO-oxidized CNFs (TEMPO-CNFs) on the crystallinity of modified LMR UF resins. First, two modification methods (post-mixing and in situ) were compared for modified LMR UF resins with TEMPO-CNFs. The modified UF resins with TEMPO-CNFs decreased the nonvolatile solid contents, while increasing the viscosity and gel time. However, the in situ modification of UF resins with TEMPO-CNFs showed lower crystallinity than that of post-mixing. Then, the in situ method was compared for all CNMs to modify LMR UF resins. The modified UF resins with CMFs using the in situ method increased nonvolatile solid contents and viscosity but decreased the gel time. The crystallinity of UF resins modified with TEMPO-CNFs was the lowest even though the crystalline domains were not significantly changed for all modified UF resins. These results suggest that these CNMs should be modified to prevent the formation of crystalline domains in LMR UF resins.

Keywords

References

  1. Akinterinwa, A., Ismaila, A., Aliyu, B. 2020. Concise Chemistry of Urea Formaldehyde Resins and Formaldehyde Emission. Insights in Chemistry & Biochemistry, pp. 1-6.
  2. Chen, Y.W., Lee, H.V., Juan, J.C., Phang, S.M. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydrate Polymers. 151: 1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083
  3. Chirayil, C.J., Joy, J., Mathew, L., Mozetic, M., Koetz, J., Thomas, S. 2014. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Industrial Crops and Products 59: 27-34. https://doi.org/10.1016/j.indcrop.2014.04.020
  4. Dunky, M. 1998. Urea-formaldehyde (UF) adhesive resins for wood. International Journal of Adhesion and Adhesives 18(2): 95-107. https://doi.org/10.1016/S0143-7496(97)00054-7
  5. Fan, M., Dai, D., Huang, B. 2012. Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform-Materials Analysis
  6. Fischer, E., Speier, A. 1895. Darstellung der Ester. Berichte der Deutschen Chemischen Gesellschaft 28: 3252-3258. https://doi.org/10.1002/cber.189502803176
  7. He, Z., Zhang, Y., Wei, W. 2012. Formaldehyde and VOC emissions at different manufacturing stages of wood-based panels. Building and Environment 47: 197-204. https://doi.org/10.1016/j.buildenv.2011.07.023
  8. Isogai, A., Saito, T., Fukuzumi, H. 2011. TEMPO-oxidized cellulose nanofibers. Nanoscale. 3(1): 71-85. https://doi.org/10.1039/c0nr00583e
  9. Jeong, B., Park, B.D. 2019. Performance of urea-formaldehyde resins synthesized at two different low molar ratios with different numbers of urea addition. Journal of the Korean Wood Science and Technology 47(2): 221-228. https://doi.org/10.5658/WOOD.2019.47.2.221
  10. Jeong, B., Park, B.D., Causin, V. 2020. Effects of storage time on molecular weights and properties of melamine-urea-formaldehyde resins. Journal of the Korean Wood Science and Technology 48(3): 291-302. https://doi.org/10.5658/WOOD.2020.48.3.291
  11. Khanjanzadeh, H., Park, B.D. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. https://doi.org/10.5658/WOOD.2020.48.2.231
  12. Kim, M., Park, B.D. 2021. Effects of Synthesis Method, Melamine Content and GPC Parameter on the Molecular Weight of Melamine-Urea-Formaldehyde Resins. Journal of the Korean Wood Science and Technology 49(1): 1-13. https://doi.org/10.5658/WOOD.2021.49.1.1
  13. Kondo, T., Kose, R., Naito, H., Kasai, W. 2014. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydrate Polymers 112: 284-290. https://doi.org/10.1016/j.carbpol.2014.05.064
  14. Kondo, T., Sawatari, C. 1996. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer (Guildf) 37(3): 393-399. https://doi.org/10.1016/0032-3861(96)82908-9
  15. Kose, R., Mitani, I., Kasai, W., Kondo, T. 2011. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules 12(3): 716-720. https://doi.org/10.1021/bm1013469
  16. Lubis, M.A.R., Jeong, B., Park, B.D., Lee, S.M., Kang, E.C. 2019a. Effect of synthesis method and melamine content of melamine-urea-formaldehyde resins on bond-line features in plywood. Journal of the Korean Wood Science and Technology 47(5): 579-586. https://doi.org/10.5658/wood.2019.47.5.579
  17. Lubis, M.A.R., Park, B.D. 2020. Influence of initial molar ratios on the performance of low molar ratio urea-formaldehyde resin adhesives. Journal of the Korean Wood Science and Technology 48(2): 136-153. https://doi.org/10.5658/WOOD.2020.48.2.136
  18. Lubis, M.A.R., Park, B.D., Lee, S.M. 2019b. Performance of hybrid adhesives of blocked-pMDI/ melamineurea-formaldehyde resins for the surface lamination on plywood. Journal of the Korean Wood Science and Technology 47(2): 200-209. https://doi.org/10.5658/WOOD.2019.47.2.200
  19. Moslemi, A., Zolfagharlou koohi, M., Behzad, T., Pizzi, A. 2020. Addition of cellulose nanofibers extracted from rice straw to urea formaldehyde resin; effect on the adhesive characteristics and medium density fiberboard properties. International Journal of Adhesion and Adhesives 99: 102582. https://doi.org/10.1016/j.ijadhadh.2020.102582
  20. Myers, G.E. 1984. How Mole Ratio of Uf Resin Affects Formaldehyde Emission and Other Properties: a Literature Critique. Forest Products Journal 34(5): 35-41.
  21. Myers, G.E., Gifford, O., Drive, P. 1986. Mechanisms of Formaldehyde Release from Bonded Wood Products. American Chemical Society, pp. 8-14
  22. Nechyporchuk, O., Belgacem, M.N., Bras, J. 2016. Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products 93: 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  23. Pandey, K.K. 1999. A Study of Chemical Structure of Soft and Hardwood and Wood Polymers by FTIR Spectroscopy. Journal of Applied Polymer Science 71(12): 1969-1975. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  24. Park, B.D. 2007. Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios. Journal of the Korean Wood Science and Technology 35(5): 67-75
  25. Park, B., Kim, J.-W. 2007. Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives. Journal of Applied Polymer Science 101(3): 1787-1792 https://doi.org/10.1002/app.23538
  26. Park, B.D., Ayrilmis, N., Kwon, J.H., Han, T.H. 2017. Effect of microfibrillated cellulose addition on thermal properties of three grades of urea-formaldehyde resin. International Journal of Adhesion and Adhesives 72: 75-79. https://doi.org/10.1016/j.ijadhadh.2016.10.003
  27. Park, B.D., Causin, V. 2013. Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal 49(2): 532-537. https://doi.org/10.1016/j.eurpolymj.2012.10.029
  28. Park, B.D., Jeong, H.W. 2011. Hydrolytic stability and crystallinity of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios. International Journal of Adhesion and Adhesives 31(6): 524-529. https://doi.org/10.1016/j.ijadhadh.2011.05.001
  29. Park, B.D., Kang, E.C., Park, J.Y. 2006. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particleboard. Journal of Applied Polymer Science 101(3): 1787-1792. https://doi.org/10.1002/app.23538
  30. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G. 2018. Nanocellulose: Extraction and application. Carbon Resources Conversion 1(1): 32-43. https://doi.org/10.1016/j.crcon.2018.05.004
  31. Pizzi, A., Valenzuela, J. 1994. Theory and practice of the preparation of low formaldehyde emission uf adhesives. Holzforschung 48(3): 254-261. https://doi.org/10.1515/hfsg.1994.48.3.254
  32. Qu, R., Tang, M., Wang, Y., Li, D., Wang, L. 2021. TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydrate Polymers https://doi.org/10.1016/j.carbpol.2020.117386.
  33. Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water- insoluble fractions. Biomacromolecules 5(5): 1983-1989. https://doi.org/10.1021/bm0497769
  34. Saito, T., Kimura, S., Nishiyama, Y., Isogai, A. 2007. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8): 2485-2491. https://doi.org/10.1021/bm0703970
  35. Singh, A.P., Causin, V., Nuryawan, A., Park, B.D. 2014. Morphological, chemical and crystalline features of urea-formaldehyde resin cured in contact with wood. European Polymer Journal 56: 185-193. https://doi.org/10.1016/j.eurpolymj.2014.04.014
  36. Stuligross, J., Koutsky, J.A. 1985. A Morphological Study of Urea-Formaldehyde Resins. The Journal of Adhesion 18(4): 281-299. https://doi.org/10.1080/00218468508080464
  37. Veigel, S., Rathke, J., Weigl, M., Gindl-Altmutter, W. 2012. Particle board and oriented strand board prepared with nanocellulose- reinforced adhesive. Journal of Nanomaterials. 2012.
  38. Wibowo, E.S., Park, B.D. 2020a. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. The Journal of Adhesion https://doi.org/10.1080/00218464.2020.1830069
  39. Wibowo, E.S., Lubis, M.A.R., Park, B.D., Kim, J.S., Causin, V. 2020a. Converting crystalline thermosetting urea-formaldehyde resins to amorphous polymer using modified nanoclay. Journal of Industrial Engineering Chemistry 87: 78-89. https://doi.org/10.1016/j.jiec.2020.03.014
  40. Wibowo, E.S., Park, B.D. 2020b. Determination of Crystallinity of Thermosetting Urea-Formaldehyde Resins Using Deconvolution Method. Macromolecular Research 28: 615-624. https://doi.org/10.1007/s13233-020-8076-2
  41. Wibowo, E.S., Park, B.D., Causin, V. 2020b. Hydrogen-Bond-Induced Crystallization in Low-Molar-Ratio Urea-Formaldehyde Resins during Synthesis. Industrial & Engineering Chemistry Research 59(29): 13095-13104. https://doi.org/10.1021/acs.iecr.0c02268