• Title/Summary/Keyword: wood charcoal

Search Result 141, Processing Time 0.03 seconds

Properties of Black Charcoal Board Manufactured from Domestic Wood Waste by Using Serum Protein Adhesive (혈장접착제를 이용한 생활목질폐잔재로부터 제조된 흑탄 보드의 성질)

  • Seo, In-Su;Lee, Hwa-Hyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.267-270
    • /
    • 2010
  • This study was carried out to manufacture black charcoal board from domestic wood waste by using serum protein adhesive which is natural, environment-friendly and human-friendly. For the preparation of the serum protein adhesive, pig blood from slaughterhouse was centrifuged and serum was separated from corpuscles and concentrated to 30% by dry weight basis. The particle size of charcoal from domestic wood waste for this study was #6-60. Hot pressing schedule was $170^{\circ}C$ and 40kgf/$cm^2$ (1 min)-10kgf/$cm^2$ (2.5 min)-40kgf/$cm^2$ (5 min). The black charcoal board made by the addition of 13% serum protein adhesive on dry weight basis gave 41.76kgf/$cm^2$ of bending strength, 8.12kgf/$cm^2$ of internal bonding strength, and excellent gas adsorption and workability.

Effect of Carbonized Wastewoods on Soil Improvement(2) (목질폐잔재 탄화물의 토양개량 효과(2))

  • Shin, Chang-Seob;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.21-28
    • /
    • 2006
  • This study was carried out to examine the effect of soil improvement according to the shape of charcoal and the kind of carbonized tree species. As the results, all of the seedlings of Thuja occidentalis and Aesculus turbinata grew better in the charcoal-treated soil than the non-treated soil. In case of powder charcoal, Thuja occidentalis seedlings grew up best in the soil treated with powder charcoal of Pinus koraiensis and then grew well in order of Larix leptolepis > particle board > Quercus acutissima. In case of granulated charcoal, the seedlings grew well in order of the granulated charcoal of Larix leptolepis > particle board > Pinus koraiensis. It was analyzed that the soil porosity and the organic matter content were mo re in the charcoal -treated soil than the non-treated soil also. It is inferred that because the aeration property and the absorption of organic matter were increased in the root zone, the growth of seedlings was better in the char-coal-treated soil.

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Characteristics of Wood Tar Produced as Byproduct from Two Types of The Kiln in The Manufacture of Oak Charcoal

  • Yang, Bong Suk;Yang, Jiwook;Kim, Dae-Young;Kim, Jin-Kyu;Hwang, Won-Jung;Kwon, Gu-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.772-786
    • /
    • 2017
  • This study investigated the characteristics of wood tar, produced as a byproduct during the production of charcoal using oak wood by the modified traditional kiln and mechanical steel kiln. The wood tar was analyzed with a number of techniques, including Py-GC/MS, NMR, MALDI-TOF, FT-IR, TG and DSC. The Py-GC/MS analysis indicated that modified traditional kiln generated a higher hydrocarbon ratio in the wood tar than that of mechanical steel kiln. On the other hand, mechanical steel kiln resulted in a higher proportion of phenolic and aromatic hydrocarbon components than that of modified traditional kiln. Those results were also confirmed by NMR analysis. The MALDI-TOF analysis suggested that the wood tar produced in the mechanical steel kiln had a slightly higher molecular weight than the wood tar produced in the modified traditional kiln. In addition, the FT-IR analysis showed characteristic peak of symmetrical stretching vibration of $CH_3$ from the modified traditional kiln while characteristic peaks of the C-C and C-O stretching vibration were observed from the mechanical steel kiln. Moreover, TG and DSC analysis suggested that the mechanical steel kiln is more thermally stable than that of modified traditional kiln. Those findings clearly showed that the method of making charcoal greatly affects the properties of wood tar.

A Fundamental Physical Properties of Wood with Charcoal and Loess (목탄과 황토함유 목질소재의 기초물성)

  • Lee, Wun-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five types of flooring board by the mixing ratio of charcoal and loess, and the physical property of five types of injected flooring board by the amount of mixture. Type D was appeared the most high value of FIR emissivity and emission power. But there was a little difference among the five types of flooring board values. In physical properties, control type flooring board and injected flooring board showed a similar tendency. Among the domestic trees, all of hard wood seems to be used to surface wood for strong hardness flooring board. But a coniferous tree was not.

  • PDF

Charcoal and Woods Excavated From Tuntaeri, Hwasung, Korea(Early Koryo period) (화성 둔대리의 고려전기 생활유구에서 출토된 숯과 목재의 수종)

  • Park, Won Gyu;Kwon, Woong Won;Park, Hee Hyun;Park, Sang Jin
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.87-93
    • /
    • 1996
  • This study was carried out to Identify wood and charcoal segments, which were excavated in 1994 at the Seohaean highway construction site along the western coast of Korea ; Tuntaeri, Hwasunggun. We identified the objects excavated at the fire places of the Tuntaeri dwelling sites (early Koryo period ; A. D. $11\~12C$) ; charcoal pieces and 1 wood segment, which was used for the handle of a metal hook. Chestnut(Castanea crenata), deciduous oaks(Quercus spp.) and maple(Acer app.) were identified from the charcoals, whereas the wood segment as willow species(Salix spp.). These species seem to represent warm and wet climate in the middlewest Korea during $11\~12C$.

  • PDF

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

Properties and Formaldehyde Emission of Particleboards Fabricated with Waste Wood Charcoal (폐목재 탄화물로 제조한 파티클보드의 물성과 포름알데히드 방출량)

  • Park, Sang-Bum;Lee, Sang-Min;Park, Jong-Young;Kang, Eun-Chang
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • Particleboard(PB) is one of the most commonly used wood-based composite materials, which can be prepared by utilizing any kind of low grade wooden materials like waste wood which contains formaldehyde itself. Therefore, PB have been of considerable interest, in issues regarding the formaldehyde emission problems. Wood wastes are carbonized by the carbonization kiln at $800^{\circ}C$. Charcoal has been known as a formaldehyde adsorber. Thus, in this study, we fabricated PBs with carbonized waste particles cores, to examine the possibility of developing less formaldehyde emitting boards. The physical and mechanical properties were evaluated by Korean Standard (KS F 3104). The moisture content of PBs ranged from 6.76 to 8.36%. Internal bond strengths decreased with the increase in the content of carbonized core particles. Formaldehyde emission showed minimum value at 25% of carbonized core particles, but the emission values increased when the amount of carbonized cote particles increased. When 25% of carbonized core particles was used, PBs met KS F 3104 standard properties.

  • PDF

Effect of Overlaid White Charcoal Board on the Ethylene Gas Adsorption and Preservation Life of Strawberry (오버레이 백탄보드의 에칠렌가스 흡착과 딸기 보관성 효과)

  • Lee, Hwa-Hyoung;Cho, Youn-Mean;Park, Han-Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.86-92
    • /
    • 2004
  • This research was carried out to examine the ethylene gas adsorption and preservation life of white charcoal boards for packaging. Two types of white charcoal board were made of #40-60 charcoal particles and mixed charcoal particles with PVA and MDI resin by wet process. For not only beauty effect but also avoiding stain from touching, white charcoal boards were overlaid with two kinds of overlay material, thin printed paper and non woven fabric. A charcoal board adsorbed ethylene gas much more than the paper and even white charcoal itself. There was no difference between two board types, between overlay treatments, and between overlay materials. Gray mold growth of strawberry arised after 2 days in a paper box and after 4 days in a white charcoal board. Preservation life of white charcoal board box was approximately twice more than that. of a paper box. There was no difference in the ability of keeping freshness between two board types, between overlay treatments, and between overlay materials.

Occupational Tasks Influencing Lung Function and Respiratory Symptoms Among Charcoal-Production Workers: A Time-Series Study

  • Pramchoo, Walaiporn;Geater, Alan F.;Jamulitrat, Silom;Geater, Sarayut L.;Tangtrakulwanich, Boonsin
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • Background: Tasks involved in traditional charcoal production expose workers to various levels of charcoal dust and wood smoke. This study aimed to identify specific tasks influencing lung function and respiratory symptoms. Methods: Interviews, direct observation, and task/symptom checklists were used to collect data from 50 charcoal-production workers on 3 nonwork days followed by 11 workdays. The peak expiratory flow rate (PEFR) was measured four times per day. Results: The PEFR was reduced and the prevalence of respiratory symptoms increased over the first 6-7 workdays. The PEFR increased until evening on nonwork days but not on workdays. Loading the kiln and collecting charcoal from within the kiln markedly reduced the PEFR and increased the odds of respiratory symptoms. Conclusion: Tasks involving entry into the kiln were strongly associated with a short-term drop in the PEFR and the occurrence of respiratory symptoms, suggesting a need for the use of protective equipment and/or the operation of an effective kiln ventilation system.