• Title/Summary/Keyword: wireless healthcare system

Search Result 202, Processing Time 0.022 seconds

Development of Wireless Respiratory Air Flow and Urinary Flow Measurement System for Home Healthcare (가정용 무선 호흡기류 및 요속신호 계측 시스템 개발)

  • Cha, Eun-Jong;Lee, In-Kwang;Lee, You-Mi;Han, Soon-Wha;Han, Jeong-Su;Suh, Jae-Won;Park, Chan-Sik;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1350-1357
    • /
    • 2012
  • Medical system for personal health management recently changes its paradigm from hospital service to self home care based on ubiquitous technology for healthcare anywhere at any time. The present study developed a wireless bio-signal measurement system for patients to self manage pulmonary disease and benign prostate hyperplasia(BPH), both of which are chronic diseases with increasing frequency in modern society. Velocity-type respiratory air flow transducer adapted to develop respiratory module for pulmonary disease management was simplified in structure to measure uni-directional flow since most important diagnostic parameters are evaluated on the expiratory flow signal only. Standard weight measurement technique was introduced to obtain urinary flow signal for BPH management. Three load cell signals were acquired for averaging to minimize noise, followed by accuracy evaluation. Transmission and receiver modules were also developed with user program for wireless communication. Averaged relative errors were 2.05 and 1.02% for respiratory volume and maximal flow rate, respectively, and the relative error was 2.17% for urinary volume, demonstrating that both modules enabled very accurate measurements. Wireless communication distance was verified within 15m, long enough for home care application. The present system allows the user to select a necessary measurement module on a particular health demand and to immediately provide the self-test results, thus better quality health care would be possible.

Remote Vital Sign Monitoring System Based on Wireless Sensor Network using Ad-Hoc Routing (애드혹 라우팅을 이용한 무선센서네트워크 기반의 원격 생체신호 모니터링 시스템)

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.426-429
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients, was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons and transfer his/ her health status wirelessly in Ad-hoc network, to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

  • PDF

A Development of Healthcare Monitoring System Based on Internet of Things Effective

  • KIM, Song-Eun;MUN, Ji-Hui;KIM, Kyoung-Sook;KANG, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Recently there has been a growing interest in health care due to the COVID-19 situation. In this paper, we intend to develop a healthcare monitoring system to provide users with smart healthcare systems in line with the healthcare 3.0 era. The system consists of a wireless network between various sensors, Android smartphones, and OLEDs using Bluetooth, and through this, a health care monitoring system capable of collecting user's biometric information and managing health by receiving data values of sensors connected to Arduino. In conclusion, the user's BPM value was calculated using the heart rate sensor, and the exercise intensity can be adjusted through this. In addition, a step derivation algorithm is implemented using an acceleration sensor, and calorie consumption can be measured using the step and weight values. As such, the heart rate, step count, calorie consumption data can be transmitted to a smartphone application through a Bluetooth module and output, and can be output to an OLED for users who are not easy to access the smartphone. This healthcare monitoring system can be applied to various groups and technologies.

Design and Implementation of a Mobile Ubiquitous Healthcare System (모바일 유비쿼터스 헬스케어시스템 설계 및 구현)

  • Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.781-793
    • /
    • 2010
  • Recently, owing to the development of ubiquitous sensor network and mobile communication technologies, many studies on healthcare system are being carried out. In this paper, we have designed and implemented a mobile u-Healthcare system based on sensor network. The u-Healthcare system is composed of three components: wireless sensor network at home, healthcare center located at remote site, and gateway which relays sensing physiological signals to healthcare center. In order to measure patient's physiological signal three sensors are used: three channel ECG sensor, pulse oximeter, and blood pressure sensor. Each sensor is mounted on a mote which can send gathered signal to the base node using Zigbee communication protocol. Once the base node receives physiological signal from each sensor, the client in the base node transfers the signal to the healthcare center. The received physiological signal at the healthcare center is analyzed and processed using various algorithms. The processed results are compared to the standard healthcare database and appropriate treatment including dietetics and exercise cure would be sent to the patient as feedback using SMS message or healthcare center web site. Each patient can check and manage one's health state every day using the healthcare system and gain a recovery under the treatments from minor health problems.

Design and Implementation of U-healthcare system with zigbee in service integration system (서비스 통합 시스템에서 지그비를 이용한 유비쿼터스 헬스케어 시스템의 설계 및 구현)

  • Jang, Mun-Suck;Shin, Kwang-Sik;Cheong, Jin-Ha;Yee, Yang-Hee;Shim, Jae-Hong;Lee, Eung-Hyuk;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.16-24
    • /
    • 2006
  • In this paper, we implement a U-healthcare system that can be applied to a service integration system. This system consists of a wireless network system a sensor module, and a integration server. The wireless network system collects data and the sensor module measures body fat, blood pressure, quantity of exercise, and SPO2. The server integrates user certification, security service and VOD service and collects user health information in real-time, and sends the data in case of emergency to a doctor or guardian.

The Mobile Health-Care Garment System for Measurement of Cardiorespiratory Signal (ECG와 호흡 측정이 가능한 모바일 헬스케어 의류 시스템)

  • Kim, Jeong-Do;Kim, Kap-Jin;Chung, Gi-Su;Lee, Jung-Hwan;Ahn, Jin-Ho;Lee, Sang-Goog
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.145-152
    • /
    • 2010
  • Most wearable system for mobile healthcare applications consists of three parts. The first part is the sensing elements based on bio-signal, the second is the circuit module for control, data acquisition and wireless communication and control and the third is garment with a built-in electrodes and circuits. The existing healthcare garment systems have to find a solution to signal-wire and uncomfortable and inappropriate electrode to long-term attachment. Even if the wireless communication is used for healthcare garment system, the interface between sensors and circuits have to use wires. To solve these problems, this paper use electrode using PEDOT coated PVDF nanoweb for ECG signal and PVDF film sensor for respiratory signal. And, we constructed garment network using digital yarn of 10um, and transmitted ECG and respiratory signal to mobile phone through the integrated circuit with bluetooth called station To evaluate feasibility of the proposed mobile healthcare garment system, we experimented with transmission and measurement of ECG and respiratory signal using nanoweb electrode and digital yarn. We got a successful result without noise and attenuation.

In the Ubiquitous Environment with Wireless Heart Rate Meter ECG Status Information System (유비쿼터스 환경에서 무선맥박측정기를 사용한 심전도 상태 정보 시스템)

  • Lim, Myung-Jea;Jung, Hee-Woong;Lee, Ki-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.51-56
    • /
    • 2011
  • Recently, it is emerging in computing industry related ubiquitous. Also U-Healthcare system develops rapidly based on this trends. It is required system of health-status information to check user's health information on real-time and wireless network environment. Consequently, in this paper propose a health-Information system based on wireless and real-time environment. It can check a tremor pulse with method of photo-plethysmography. It convert pulse state information into 2-dimension bar code in order to confirm health information using mobile and also this system provide service of pulse visual record and explanation from specialist with MMS.

Mobile Ubiquitous Healthcare System Using Wireless Sensor Network (무선센서네트워크 기반의 모바일 유비쿼터스 헬스케어시스템)

  • Shin, Kwang-Sig;Yau, Chiew-Lian;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2107-2112
    • /
    • 2006
  • As growing up of elderly population, the interesting on healthcare system in normal life using W is increasing. An integrated u-healthcare service architecture with IEEE 802.11 and IEEE 802.15.4 based sensor network and code divisi(m multiple access(CDMA) public mobile telecommunication networks was designed and developed. Sensor nodes with electrocardiogram(ECG), body core temperature sensors are attached on the patients' body. The healthcare parameters are transferred to web server via CDMA mobile network or through existed LAN network. The existed LAN network is suggested to be used for continuous monitoring of patient's health status in hospital while mobile networks can be used for general purpose at home or outdoor where infra networks unavailable. This system enable healthcare personal to be able to continuously access, review, monitor and transmit the patients information whereever they are, whenever they want. And immediately check their status by using cellular phone and obtain detail information by communication with medical information server through CDMA. By using this developed integrated u-healthcare service architecture, we can monitor patients' health status for 24 hours.

A Study on the Ontology-Based Context Aware System for MBAN (MBAN(Medical Body Area Network)에서의 온톨로지 기반 상황인지 시스템 개발에 관한 연구)

  • Wang, Jong Soo;Lee, Dong Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • The u-Healthcare system, a new paradigm, provides healthcare and medical service anytime, anywhere in daily life using wired and wireless networks. It only doesn't reach u-Hospital at home, to manage efficient personal health in fitness space, it is essential to feedback process through measuring and analyzing a personal vital signs. MBAN(Medical Body Area Network) is a core of this technology. MBAN, a new paradigm of the u-Healthcare system, can provide healthcare and medical service anytime, anywhere on real time in daily life using u-sensor networks. In this paper, an ontology-based context-awareness in MBAN proposed system development methodology. Accordingly, ontology-based context awareness system on MBAN to Elderly/severe patients/aged/, with measured respiratory rate/temperature/pulse and vital signs having small variables through u-sensor network in real-time, discovered abnormal signs and emergency situations which may happen to people at sleep or activity, alarmed and connected with members of a family or medical emergency alarm(Emergency Call) and 119 system to avoid sudden accidents for early detection. Therefore, We have proposed that accuracy of biological signal sensing and the confidence of ontology should be inspected.

Simulation of a Mobile Patient Monitoring System with Load-balancing (부하 조절을 지원하는 이동환자 상시 모니터링 시스템 시뮬레이션)

  • Choi, Eun Jung;Kim, Myuhng Joo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.4
    • /
    • pp.67-73
    • /
    • 2010
  • A Wireless Sensor Network(WSN) is a promising infrastructure for the future U-healthcare system. In a WSN for the U-healthcare system, both biometric data and location data are transferred hierarchically from lots of mobile patients to the base station server and some countermeasures are made in real time if necessary. In this process, we encounter the load-balancing problem when many patients gather in a specific area. We also encounter the data duplication problem when each patient moves into an area monitored by several supervisors. The second problem is closely related to the first one. In this paper, we propose a mobile patient monitoring system with priority-based policy in load-balancing to solve the previous two problems and perform a DEVS Java-based system simulation to verify the system efficiency.