• Title/Summary/Keyword: wind power penetration

Search Result 70, Processing Time 0.029 seconds

Application of Wind Turbine Models for Power Flow Analysis (풍력 발전기의 조류해석 모델의 적용)

  • Kim, Young-Gon;Song, Hwa-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.211-212
    • /
    • 2008
  • As a result of environmental concerns, the production of electricity through renewable energy resources is rapidly increasing. Wind energy is among the fastest growing renewable energy resources now being integrated in the power system, and the penetration rate of wind generation has been gradually increased. For power flow analysis of the recent systems, thus, steady-state modeling of wind turbines and their application are of great importance. This paper presents the procedure we applied for implementation of a steady-state wind turbine model in power flow.

  • PDF

Improvement in Active Power Control Methods for a Wind Farm Based on Modified Wind Turbine Control in Danish Grid Codes

  • Sim, JunBo;Song, Il-Keun;Lee, Yongseung;Lee, Hak-Ju;Choi, Yun-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1438-1449
    • /
    • 2018
  • The importance of power system stability has been emphasized with an increase of wind energy penetration in the power system. Accordingly, the guarantee on various control capabilities, including active and reactive power control of wind farms, was regarded as the most important aspect for the connection to the grid. To control the wind farm active power, the wind farm controller was introduced. The wind farm controller decides the power set points for each wind turbine generating unit and each wind turbine generating unit controls its power according to the set points from the wind farm controller. Therefore, co-relationship between wind farm controller and wind turbine controllers are significantly important. This paper proposes some control methods of wind farm active power control based on modified wind turbine control for power system stability and structures to connect wind turbine controllers to wind farm controller. Besides, this paper contributes to development of control algorithm considering not only electrical components but also mechanical components. The proposed contributions were verified by full simulation including power electronics and turbulent wind speed. The scenario refers to the active power control regulations of the Eltra and Elkraft system in Denmark.

Advanced Tools for Modeling, Design and Optimization of Wind Turbine Systems

  • Iov Florin;Hansen Anca Daniela;Jauch Clemens;Sorensen Poul;Blaabjerg Frede
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.83-98
    • /
    • 2005
  • As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more important in controlling the interaction between the mechanical system of the wind turbine and the main power system. The presence of power electronics in wind turbines improves their controllability with respect not only to its mechanical loads but also to its power quality. This paper presents an overview of a developed simulation platform for the modeling, design and optimization of wind turbines. The ability to simulate the dynamic behavior of wind turbines and the wind turbine grid interaction using four simulation tools (Matlab, Saber, DIgSILENT and HAWC) is investigated, improved and extended.

Stochastic Stability Analysis of the Power System Incorporating Wind Power using Measurement Wind Data

  • Parinya, Panom;Sangswang, Anawach;Kirtikara, Krissanapong;Chenvidhya, Dhirayut
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1110-1122
    • /
    • 2018
  • This paper proposes an alternative method to evaluate the effect of wind power to the power system stability with small disturbance. Alternatively, available techniques for stability analysis of a power system based on deterministic methods are less accurate for high penetration of wind power. Numerical simulations of random behaviors are computationally expensive. A stochastic stability index (SSI) is proposed for the power system stability evaluation based on the theory of stochastic stability and energy function, specifically the stochastic derivative of the relative well-defined energy function and the critical energy. The SSI is implemented on the modified nine-bus system including wind turbines under different conditions. A doubly-fed induction generator (DFIG) wind turbine is characterized and modeled using measured wind data from several sites in Thailand. Each of the obtained wind power data is analyzed. The wind power effect is modeled considering the aggregated effect of wind turbines. With the proposed method, the system behavior is properly predicted and the stability is quantitatively evaluated with less computational effort compared with conventional numerical simulation methods.

Improved Frequency Mitigation of a Variable-Speed Wind Turbine (개선된 가변속 풍력발전기의 주파수 평활화)

  • Li, Mingguang;Yang, Dejian;Kang, Yong Cheol;Hong, Junhee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.695-701
    • /
    • 2018
  • For a power grid that has a high wind penetration level, when wind speeds are continuously fluctuating, the maximum power point tracking (MPPT) operation of a variable-speed wind turbine (VSWT) causes the significant output power fluctuation of a VSWT, thereby significantly fluctuating the system frequency. In this paper, an improved power-smoothing scheme of a VSWT is presented that significantly mitigates the frequency fluctuation caused by varying wind speeds. The proposed scheme employs an additional control loop based on the frequency deviation that operates in combination with the MPPT control loop. To improve the power-smoothing capability of a VSWT in the over-frequency section (OFS), the control gain of the additional loop, which is set to be inversely proportional to the rotor speed, is proposed. In contrast, the control gain in the under-frequency section is set to be proportional to the rotor speed to improve the power-smoothing capability while avoiding over-deceleration of the rotor speed of a VSWT. The proposed scheme significantly improves the performance of the power-smoothing capability in the OFS, thereby smoothing the frequency fluctuation. The results clearly demonstrate that the proposed scheme significantly mitigates the frequency fluctuation by employing the different control gain for the OFS under various wind penetration scenarios.

Real-Time Peak Shaving Algorithm Using Fuzzy Wind Power Generation Curves for Large-Scale Battery Energy Storage Systems

  • Son, Subin;Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage system (BESS). Although several transmission and distribution functions could be implemented for diverse purposes in BESS applications, this paper focuses on a real-time peak shaving algorithm for an energy time shift, considering wind power generation. In a high wind penetration environment, the effective load levels obtained by subtracting the wind generation from the load time series at each long-term cycle time unit are needed for efficient peak shaving. However, errors can exist in the forecast load and wind generation levels, and the real-time peak shaving operation might require a method for wind generation that includes comparatively large forecasting errors. To effectively deal with the errors of wind generation forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based peak shaving that considers fuzzy wind power generation.

Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

  • Ye, Xi;Qiao, Ying;Lu, Zongxiang;Min, Yong;Wang, Ningbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1596-1604
    • /
    • 2013
  • Coordinating operation between large-scale wind power and thermal units in multiple time scale is an important problem to keep power balance, especially for the power grids mainly made up of large coal-fired units. The paper proposes a novel operation mode of multi-scale unit commitment (abbr. UC) that includes mid-term UC and day-ahead UC, which can take full advantage of insufficient flexibility and improve wind power accommodation. First, we introduce the concepts of multi-scale UC and then illustrate the benefits of introducing mid-term UC to the wind-coal intensive grid. The paper then formulates the mid-term UC model, proposes operation performance indices and validates the optimal operation mode by simulation cases. Compared with day-ahead UC only, the multi-scale UC mode could reduce the total generation cost and improve the wind power net benefit by decreasing the coal-fired units' on/off operation. The simulation results also show that the maximum total generation benefit should be pursued rather than the wind power utilization rate in wind-coal intensive system.

An Strategy of Increasing the Wind Power Penetration Limit with VSC-HVDC in Jeju Power System (전압형 HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • LEE, SEUNGMIN;Chae, Sang Heon;Kim, Ho Min;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.461-462
    • /
    • 2015
  • The government on Jeju Special Self-governing Province has a policy named 'Carbon Free Island Jeju by 2030'. The main purpose in this policy is to install wind power system with the total capacity of 1.35 GW by 2020. When the demand load on Jeju Island power system is lower than entire output power, a lot of dump power will be produced from the large-scale wind farms. It will be able to cause the wind power limit on Jeju Island. Consequently, the additional power facility must be installed to ensure stable power system operation in Jeju Island and increase wind power limit. From this point, this paper proposes the installation of MMC-HVDC, which can supply power in real time in the desired direction. The effectiveness of MMC-HVDC based on measured data of Jeju Island power system will be verified by using PSCAD/EMTDC simulation program.

  • PDF

A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation

  • Cui, Wei;Yan, Wei;Lee, Wei-Jen;Zhao, Xia;Ren, Zhouyang;Wang, Cong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The increasing of wind power penetration level presents challenges in classical optimal reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. This paper proposes a two-stage stochastic programming model for ORPD by considering the uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the schedule of compensators will be determined in the first-stage while accounting for the costs of adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and generator in the second-stage will compensate the mismatch caused by the first-stage decision. The objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the proposed method.

Study of Wind Farm Model Configuration for WFMS simulation (WFMS 모의를 위한 풍력발전단지 모델 구성 연구)

  • Kim, Hyunwook;Jung, Seungmin;Hwang, Pyeong-Ik;Yoo, Yeuntae;Song, Sungyoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.247-248
    • /
    • 2015
  • Wind turbines causes instabilities on the grid as their penetration increase. To mitigate harmful effects from wind turbines, transmission system operator(TSO) set up some requirements to obligate for wind generation operator for grid connection. So wind farm management system(WFMS) has important role to follow requirement from TSO, WFMS calculates available real power by considering wake effects, and dispatches real power order to each wind turbine in wind farm to optimize for decreasing load fatigue. To verify operation of WFMS, real-time simulator(RTS) is necessary. This paper deals with RTS configuration to verify WFMS operation. RTS includes wind farm model and power flow code. Normally, wind farm equivalent simple model makes wind turbines in wind farm to one wind turbine mode which cannot verify power flow in wind farm and WFMS operation. Thus, this paper makes wind farm model using simple wind turbine model with transfer function. Matlab is used for make power flow code and wind farm model to impose RTS and those model is certified by PSCAD/EMTDC.

  • PDF