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Abstract – The increasing of wind power penetration level presents challenges in classical optimal 
reactive power dispatch (ORPD) which is usually formulated as a deterministic optimization problem. 
This paper proposes a two-stage stochastic programming model for ORPD by considering the 
uncertainties of wind speed and load in a specified time interval. To avoid the excessive operation, the 
schedule of compensators will be determined in the first-stage while accounting for the costs of 
adjusting the compensators (CACs). Under uncertainty effects, on-load tap changer (OLTC) and 
generator in the second-stage will compensate the mismatch caused by the first-stage decision. The 
objective of the proposed model is to minimize the sum of CACs and the expected energy loss. The 
stochastic behavior is formulated by three-point estimate method (TPEM) to convert the stochastic 
programming into equivalent deterministic problem. A hybrid Genetic Algorithm-Interior Point 
Method is utilized to solve this large-scale mixed-integer nonlinear stochastic problem. Two case 
studies on IEEE 14-bus and IEEE 118-bus system are provided to illustrate the effectiveness of the 
proposed method. 
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1. Introduction 
 
The increasing penetration of intermittent and stochastic 

wind generation presents great challenges for traditional 
power system control strategies of voltage regulation. To 
ensure the secure and economic operation of power system, 
it is necessary to dispatch the reactive sources based upon 
their regulating characteristics and constraints.  

Generally, the compensator (such as capacitor/reactor 
banks) and on-load tap changer (OLTC) are viewed as the 
discrete control devices, while the generator is regarded 
as continuous control devices. The different regulating 
characteristics of these two types of control devices 
require distinct control strategies to manage the outcome 
of voltage profile in the presence of high penetration of 
wind generation. Due to the daily operation constraints of 
discrete control devices, frequent and excessive switching 
operations should be avoided. In [1-6], the daily schedule 
of discrete control devices is optimized based on dynamic 
programming approach while accounting for constraints of 
maximum allowable daily switching operation number 
(MADSON). The minimum total energy loss of daily 24-
snapshot is defined as the objective function to evaluate the 
control performance [5]. In [6], the total power system 

operation cost involving fuel cost of generators and 
switching cost of discrete control devices are considered. 
However, dynamic programming approach is a very 
complex nonlinear optimization due to the spatial-temporal 
coupling. For the sake of simplicity, time-interval-based 
approaches [7-9] are developed to decompose the daily 
load curve into several sequential load levels. The number 
of load levels satisfies the requirement of MADSON 
constraints. Therefore, this problem is converted into 
several single Deterministic ORPD (DORPD) problems 
that can be solved by traditional optimization methods. 
Another approach considering costs of adjusting discrete 
control devices is proposed to avoid excessive operations 
[6, 10]. However, in these articles, load uncertainty is not 
taken into account. The schedule of discrete control 
devices is always solved under a specified load level, 
which hardly represents the load fluctuation in the 
corresponding time interval. 

Besides, the integration of large amounts of wind 
generation into power grid brings more uncertainty in 
real-time operation, which, to a large extent, increases the 
probability of frequent operation for discrete control 
devices. If MADSON is reached early in a day, the discrete 
control devices will be blocked which could degrade the 
performance of voltage control due to the lack of control 
capability [5]. As a result, the schedule of discrete control 
devices based on DORPD without considering the 
uncertainty may not be the optimal or even feasible. 

To deal with this challenge, the stochastic programming 
incorporated the randomness into the modeling process is 
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an alternative. In [11], Chance-constrained programming is 
utilized in DORPD to handle load uncertainty and random 
branch outages, the inequality constraints are satisfied by 
a predefined probability level. In [12], a two-point estimate 
method is used to model load uncertainty in multi-
objective DORPD problem, and statistic estimation method 
is utilized for the optimal control variables obtained by the 
repeating deterministic simulation process. The authors 
in [13] propose a multi-objective optimal active and 
reactive power dispatch problem with load and wind 
generation uncertainties. Economic dispatch is used to 
obtain the real power output of generators. However, in 
these articles, the different regulating characteristics of 
discrete and continuous control devices is not considered 
and differentiated. The discrete control devices will be 
scheduled associated with the continuous control devices. 
As a result, MADSON constraints might be violated in 
daily 24-snapshot application. 

In this paper, a two-stage stochastic programming model 
for ORPD with high penetration level of wind generation 
is proposed. The main concept of two-stage stochastic 
programming is that the decision maker takes some 
action in the first-stage before the actual realization of the 
uncertainty. Once the uncertainty has unfolded, a recourse 
decision can be made at the second-stage to coordinate or 
compensate any negative impact that might have been 
experienced as a result of the first-stage decision [14-16]. 
This model is suitable for the coordination of the two 
different regulating characteristics of control devices. The 
schedule of discrete control device is preferred to be 
determined in advance due to the constraints of MADSON, 
while the continuous control device will cover the 
uncertainty by continuous adjustment. Since the step size 
of the OLTC is relatively small, it will be treated as 
continuous control device in this paper. Specifically, the 
compensators involving capacitor/reactor banks are 
regarded as the first-stage integer variables since they are 
the only reactive source in substation. The OLTC and 
generator are considered as the second-stage continuous 
variables which compensate the mismatch caused by the 
first-stage decision. In other words, such arrangements are 
to guarantee that there are available resources in either 
substation or power plant to take care the uncertainty in 
the real time operation. To model wind speed and load 
uncertainties in a specified time interval, three-point 
estimate method (TPEM) is utilized since it only requires 
the first few statistical moments of the data. The 
behavior of m random variables can be evaluated by 
2m+1 deterministic calculation. 

From the mathematical point of view, the proposed 
method is a large-scale mixed-integer nonlinear stochastic 
programming, which is complex and difficult to solve. In 
this paper, a hybrid Genetic Algorithm-Interior Point 
Method [17] is implemented to reduce computational 
burden caused by stochastic programming. Genetic 
algorithm (GA), a global optimization technique, is a 

typical artificial intelligent algorithm with peculiarity of 
dealing with the integer variables, while interior point 
method (IPM) achieves a fast convergence to solve large-
scale nonlinear program problem with a difficult in dealing 
with discrete variables. The hybrid approach is adopted 
here to take advantages of both approaches; GA performs 
the search of switching compensators in the first-stage, 
while IPM takes control of the continuous variables and 
constraints in the second-stage under uncertainty formulated 
by TPEM. 

The remaining part of this paper is organized as follows: 
the proposed two-stage stochastic programming model is 
introduced in Section III. Then, the stochastic framework 
based on TPEM is described in Section III. According to 
the hybrid GA-IPM, the procedure of proposed two-stage 
stochastic programming is presented in Section 4. Section 
5 shows the case study results on the IEEE 14-bus and 
IEEE 118-bus system. Finally, Section 6 contains a brief 
conclusion based on the numerical simulation results. 

 
 

2. Two-Stage Stochastic Programming 
Formulation 

 
In reality, the load pattern and wind farm outputs 

differed from the forecast always exists, which can pose 
challenges on classical DORPD. Due to the different 
regulating characteristics and MADSON constraints, the 
schedule of discrete and continuous control devices could 
be determined and deployed in different stages under 
uncertainty effects. The compensators are classified as the 
first-stage variables that should be decided before the 
realization of uncertainty, OLTC and generator are the 
second-stage variables, which can be decided after the 
uncertainty have been observed and identified. Therefore, 
operation times of compensators can be saved due to no 
response for the uncertainty. This framework is a typical 
two-stage stochastic programming. 

A standard formulation of the two-stage stochastic 
programming [18] is described as follows: 

 
  (1) 

 { }( , ) min ( ) | ( ) , ( ) 0Q x qy Wy h Tx yξ ξ ξ ξ= = − ≥  (2) 
 

where x  is known as the first-stage decision variables 
that should be decided “here-and-now”, and it does not 
response to the uncertainty of ξ . On the other hand, ( )y ξ  
denote the second-stage decision variables that are ‘‘wait-
and-see’’ variables which can be decided when all 
uncertainty ξ  have been observed. Any or all elements of 
uncertain parameters  ( , , , )q h T Wξ = can be random. For a 
given realization of ξ , the uncertain parameters in the 
second-stage become known and the optimal solution 

( , )Q x ξ shown in Eq. (2) could be carried out consequently. 

[ ]min ( , ) . . , 0Tc x E Q x s t Ax b xξ+ = ≥
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The expected value [ ( , )]E Q x ξ  is used to evaluate the 
recourse cost associated with all realization of ξ . The 
first-stage cost cTx and the recourse cost in the second-
stage are involved in the objective function of Eq. (1). To 
coordinate or compensate with the first-stage decision, the 
optimal solution tends to have the property that x leaves the 
second-stage decision in a position to exploit advantageous 
outcomes of ξ . 

In general, frequent switching operation could shorten 
life expectancy of devices and require more maintenance. 
In this regards, the costs of switching compensators is 
considered in the first-stage, which aims to avoid excessive 
operations from the perspective of economics. In the 
second-stage, the expected energy loss is used to evaluate 
the control performance of first- and second-stage decision. 

Here, the cost of adjusting the compensators (CACs) is 
represented by unit adjustment cost (UAC), which depends 
on the investment, the system loss due to the fault of 
reactive power control devices, etc.[10]. Operating times of 
compensators is defined as the difference of the bank 
number switched in. For example, if the current switched 
capacitor is 2 banks, and the optimal value is 4, it means 
two more banks are needed to switch in and the operating 
time of this capacitor is 2. Therefore, the cost of switching 
compensators can be calculated with the UAC multiplied 
by the corresponding operating times. Suppose that the 
costs of the recourse decision associated with the adjusting 
generator terminal voltages and switching tap ratios is 
neglected. 

 
2.1 Objective function 

 
The objective of the optimization is to minimize the sum 

of costs of switching compensators for the first-stage 
decision and the expected energy loss through the 
combined first- and second-stage decisions. The objective 
function of the two-stage stochastic programming is 
established as follows: 

 
 0

C C loss Cmin [ ( )]Tf E P , ,τβ= − +α Q Q Q U ω  (3) 

 G[ ]U = K,V  (4) 
 L L W W[ , , , ]ω = P Q P Q  (5) 

 
subject to 

 
C( ) 0=g Q ,U,ω  (6) 

min max
C C C≤ ≤Q Q Q  (7) 
min max

GG G≤ ≤V V V  (8) 
min max≤ ≤K K K  (9) 
min max
G G G≤ ≤Q Q Q  (10) 
min max≤ ≤V V V  (11) 

 
with the following nomenclature: 

QC vector of numbers of switching compensators as the 
first-stage decisions; 

QC
0 vector of initial numbers of switching compensators;

U vector of second-stage decisions; 
ω vector of uncertain parameters; 
PL vector of real load demands (MW); 
QL vector of reactive load demands (MVar); 
Pw vector of real power output for wind farms (MW); 
Qw vector of reactive power output for wind farms 

(MVar); 
QG vector of reactive power output for generators 

(MVar); 
K vector of transformer tap ratios; 

VG vector of generator terminal voltages; 
V vector of load bus voltage magnitudes; 
α unit adjustment cost of switching compensators 

($/times); 
Ploss real power loss (MW); 
β electricity price ($/kWh); 
τ time interval, usual 1 h. 
 
Subscript min and max are the lower and upper bounds, 

respectively; E(·) and g(·) are the expected value operator 
and load flow function, respectively; In this objective 
function (3), the first term is regarded as the first-stage 
function which represents the costs of adjusting the 
compensators while considering the constraint (7). The 
second term is regarded as the second-stage function which 
represents the expected energy loss in the time interval
ττ , while considering the constraints (6), (8)-(11). Ploss is 
obtained by calculating the difference between total real 
power output of generators and total real load demand. 
Note that the second-stage function is a typical DORPD 
problem. The corresponding second-stage decisions U will 
be carried out after the first-stage decisions and uncertain 
parameters ω  are realized. For a given QC, U and ω , 
state variables involving the voltage magnitude, angle of 
all load buses and QG can be calculated with Eq. (6). 

As a classic reactive power dispatch problem, real 
power economic dispatch is not addressed in this paper. 
However, it’s unreasonable to use one swing bus to 
balance the system power mismatch caused by the 
uncertainty. Therefore, real power output of all 
generators is rescheduled based on the unit participation 
factors, which is proportional to the original total real 
power outputs of all generators. Besides, the total real 
power output of all generators is related with the total load 
demand, and will be changed proportionally with the 
fluctuated total load demand. For the wind farm, it is 
treated as a load with negative real power injection, and not 
required to match the load demand. 

In application, the first-stage decision for the com-
pensators could be implemented and fixed in the time 
intervals. It means there is no need for compensators to 
cover uncertainty effects. However, the second-stage 
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decision will be determined in real time in which the 
uncertainty is identified. 

 
2.2 Normalization of unit adjustment cost 

 
To demonstrate the objective function with unit power, 

the normalization is achieved by  
 

 
T

T

τβ
= αc  (12) 

 
where c denotes the vector of unit adjustment costs of 
switching compensators based on power (kW/times). 
Although the UAC of compensators can be evaluated 
theoretically, it is difficult and unpractical to determine the 
exact value for each compensator. Therefore, the average 
value of UAC for all compensators is adopted here. 
According to long-term operation experience, the average 
value corresponds to 4 kW/times [10]. 

Then, the objective function (3) can be transformed as 
follows: 

 

 0
C C loss Cmin [ ( )]TfF E P , ,

τβ
= = − +c Q Q Q U ω  (13) 

 
2.3 Wind power model 

 
Wind power output is related with wind speed. If the 

wind speed is lower than the cut-in or higher than the cut-
out wind speed, wind farm will not generate power. At a 
specified wind speed, the wind farm output PW can be 
described as 

 

 

ci

1 2 ci r
w

r r co

co

0 if 0
, if

, if
0, if

v v
k v k v v v

P
P v v v

v v

≤ ≤⎧
⎪ + < ≤⎪= ⎨ < ≤⎪
⎪ >⎩

，

 (14) 

 
where, 

 

 r
1

r ci

P
k

V V
=

−  (15) 

 2 1 cik k V= −  (16) 
 

where Pw is the wind farm output, v is the average wind 
speed of wind farm; Pr is the rated capacity of the wind 
farm; Vci, Vr  and Vco are the cut-in, rated and cut-out 
speeds of the wind farm, respectively. 

Doubly Fed Induction Generators (DFIGs) are widely 
used in wind farm and have certain reactive compensation 
capabilities. For simplicity, PQ bus is adopted to represent 
the characteristic of this kind of wind turbine. Suppose 
that the power factor of wind turbine is constant with the 
support of other reactive power source, i.e. capacitor 

banks, Static Var Compensator, or Static Synchronous 
Compensator. The reactive power of wind farm is defined 
as 

 
 w w tanQ P α=  (17) 

 
where α is power factor angle and Qw	 is the reactive 
power of the wind farm. 

 
 

3. Uncertainty Characterization 
 
The techniques of solving stochastic programming 

can be classified into three categories: (1) Monte Carlo 
Simulation (MCS), (2) analytical techniques, and (3) 
approximate techniques. MCS uses randomized numerical 
experiments to obtain the distributions of possible 
outcomes without simplification. However, it requires a 
large number of iteration to reach the desired convergence 
[19]. To overcome the deficiency of MCS, analytical 
techniques use approximate formulas for calculating the 
statistical moments of the output variables. However, 
the specific simplification is based on the used formulation 
which needs significant efforts. Point estimate method 
(PEM) is the most efficient approximate technique 
overcomes the limitation mentioned before. To reduce the 
computational burdens and take advantages the merit of 
MCS, only certain special points determined by the first 
few statistical moments are used in PEM. In this paper, the 
three-point estimate (TPEM) method is utilized here to 
capture the uncertainty effects [20]. 

Mathematically, the second-stage function in Eq. (13) is 
a typical DORPD problem which can be formulated as a 
nonlinear mapping as follows: 

 
 ( )S s= x  (18) 

 
where		x is the input random vector includes wind speed 
and load uncertainties, S is the output vector of the 
DORPD problem. The task of TPEM is to calculate the raw 
moments of each output with three points on each of the 
probability distributions of wind speed and load [20]. 
Suppose that there are m uncorrelated input variables. For 
each input variable xi	ሺi	=1,2,…mሻ can be defined as three 
representative points, 
 
 ( 1,2,3)ik i ik ix kμ ξ δ= + =  (19) 

 
where μi	and δi	are the mean and standard deviation of xi. 
ξik  is the coefficient reflecting the kth location on its 
probability distribution.  

In Eq. (19), the three values of ξik is calculated by 
 

 23
1 2 4 3 3

3, , 0
2 4
i

i i i i i
λξ ξ λ λ ξ= ± − =  (20) 
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where λi3 and λi4 denote the skewness and kurtosis of the 
random input variable	xi, respectively, which are calculated 
by 

 

 
3

3 3

( )i i i i
i

i

x f dxμ
λ

δ

+∞

−∞
−

= ∫  (21) 

 
4

4 4

( )i i i i
i

i

x f dxμ
λ

δ

+∞

−∞
−

= ∫  (22) 

 
where fi is the probability density function of xi. 

Once the three values of ξik	 for each random input 
variable xi	are obtained, the typical DORPD problem can 
be calculated three times for each xi, while other random 
variables are specified as their means. Note that only 2m+1 
times DORPD calculation is performed since ξi3 is equal 
to zero. Therefore, this approach converts the stochastic 
programming with m random input variables into 2m+1 
equivalent deterministic optimizations. 

The raw moment of a random output variable S is 
estimated by 

 

 
3

1 1
[ ]

m

s ik ik
i k

r E S w S
= =

= =∑∑  (23) 

 
where wik is three weighting factors calculated by 
 

 1 2
1 1 2

1
i

i i i

w
ξ ξ ξ

=
−

 (24) 

 2 2
2 1 2

1
i

i i i

w
ξ ξ ξ

=
−

 (25) 

 3 2
4 3

1 1
i

i i

w
m λ λ

= −
−

 (26) 

 
 

4. Mathematical Algorithms 
 
According to structure of two-stage stochastic pro-

gramming, a hybrid GA-IPM is developed here. For GA, 
each individual representing the switching compensators is 
encoded as the first-stage integer variables and its length is 
equal to the number of the first-stage variables. For the 
second-stage function in eq. (13), the expected real power 
loss can be converted to 2m+1 equivalent DORPD. 
Although IPM is utilized to solve the typical large-scale 
nonlinear programming problem, 2m+1 DORPD running 
is required for fitness evaluation of each individual. 
Therefore, the computational burden caused by GA and 
stochastic programming can be reduced. 

An alternative is to take advantage of the intrinsically 
parallel nature of GA and perform the evaluation of fitness 
function for all individuals in Master-slave model [21]. 

Furthermore, A DORPD quadratic model [22] is applied 
here to speed up calculation. This method replaces OLTC 
transformer branch with an ideal transformer and its series 
impedance with dummy node located between them. 
Therefore, the Hessian matrices become constants and the 
repeated calculation in iteration process can be avoided. 

IPM solves the continuous optimization involving tap 
ratios and generator terminal voltages under the fixed 
first-stage variable. In rare cases, the result may be not 
convergent due to the random first-stage variable. It means 
the optimal process is infeasible at this operating condition. 
Therefore, an alternative is to use power flow to calculate 
the real power loss at this operating condition, which 
always converges in few iterations. 

The basic procedure for proposed two-stage stochastic 
programming based on the hybrid GA-IPM is summarized 
as follows: 

1) Initial the data including wind speed and load in a 
specified time interval; 

2) Calculate ikλ , ikw , ikξ  according to the input data; 
3) Create the first generation of switching compensators 

while considering the constraint (7); 
4) Use IPM to calculate the expected real power loss for 

all individuals in parallel; 
5) Evaluate the fitness function based on Eq. (13); 
6) Generate a new generation with selection, crossover, 

mutation operators; 
7) Repeat the step 4-6 until user-specified max number 

of evolutions is reached. 
 
 

5. Case Study 
 
In this section, the IEEE 14-bus and IEEE 118-bus 

system [23] are used as examples to validate the effec-
tiveness of the proposed method. In both test systems, a 
one-hour load fluctuation of a real power system is used to 
simulate the stochastic behavior of the loads. The load 
demand in every 5 min is assigned to each load buses 
according to the initial load proportion of each test system. 
The curve of one-hour load demand is shown in Fig. 1. 

 

 
Fig. 1. The load demand in every 5 min of a real power 

system. 
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A wind farm compatible to the total capacity of the test 
system is added. The connected location and the rated 
capacity of the wind farm are listed in Table 1. It is assumed 
that the wind speed follows the Weibull distribution which 
is recognized as the most popular distribution to represent 
wind speed. The probability distribution function and the 
parameters of wind speed are illustrated in Table 2. 

The modified IEEE 14-bus system includes three 
generators, one wind farm, four capacitor banks, and three 
transformers with on-load tap changer. The four capacitor 
banks are available at bus 3, 6, 8 and 9, respectively, in 
which consists of nine 3 MVar steps. The tap settings of 
transformers are 1.0  ± 8×1.25%. Bus 1 is assigned as the 
slack bus within the reactive power controllable range of 
[-0.2, 0.1], bus 2 and 6 are the PV buses within reactive 
power controllable ranges of [-0.4, 0.5], [-0.2, 0.24], 
respectively. The range of the generator voltage is [0.9,1.1]. 

The modified IEEE 118-bus system consists of fifty-
three generators, one wind farm, fourteen compensators 
and nine transformers with on-load tap changer. Capacitor 
banks are installed at bus 34, 44, 45, 46, 48, 74, 79, 82, 83, 
105, 107 and 110, and reactor banks are installed at bus 5 
and 37. Also, all compensators include nine 5 MVar steps. 
The transformers have the same parameters as IEEE 14-bus 
system. Other initial operating conditions and settings of 
this system are given in [23]. 

To clearly illustrate the effectiveness of proposed method, 
a comparison of three different cases has been utilized, 

1.  DORPD without considering the MADSON constraints; 
2. The proposed method considering the uncertainty and 

CACs; 
3. DORPD based on time-interval approach 
 

5.1 IEEE 14-bus system 
 

Case 1 
Due to the unlimited operating times, DORPD can make 

full use of the control capability of discrete control devices. 
In China, DORPD cycle is executed from 15 min to 1h 

according to the daily load demand prediction [24]. 
Theoretically, the shorter execution cycle used, the better 
voltage profile can be achieved. 

In this case, DORPD execution cycle is assumed as 15 
min, which means the schedule of discrete control devices 
will be implemented and fixed in the 15 min interval. 
However, generators will be adjusted automatically to 
satisfy the load demand. The minimization of real power 
loss is considered as the objective function which ignores 
the costs of adjusting the discrete control devices. The 
optimal schedule of discrete control devices in each time 
interval is shown in Fig. 2, and the control performance is 
listed in Table 3. The real power loss of each time interval 

loss P , generator reactive power outputs G Q , the mean 
value of voltage for all load buses LV  are investigated here. 

From Fig. 2, it is obviously that discrete control devices 
are switched to the ideal position based on DORPD in 
each 15 min interval. The tap ratio is rounded to the 
nearest integral tap position due to the relatively small 
step. Note that compensator 4 is fully injected within the 
hour due to relatively large reactive power demand in this 
location, however, the schedule of other compensators 
varies frequently within the present boundaries. Therefore, 
the MADSON might be exceeded if this scheme is applied 
into the whole day. It is observed from Table 3 that 
generators produce adequate reactive powers to take the 

Table 1. Location and rated capacity of wind farm 

Test systems Connected 
location 

Rated 
Capacity(MW) 

Rated power 
factor 

IEEE 14-Bus 
system Bus 8 30 0.9 

IEEE 118-Bus 
system Bus 59 260 0.9 

 
Table 2 Probability distributions and parameters of wind 

speed 
Probability distribution function k c 

1

( ) exp[ ]
k k

v
k v vf v
c c c

−
⎛ ⎞⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

1.637 5.218 

Cut-in speed(m/s) Rated speed(m/s) Cut-out speed(m/s)
3 13 25 

 

 
Fig. 2. The schedule of discrete control devices in Case 1
 

Table 3. Optimization result of Case 1 

Time(min) Ploss QG1 QG2 QG6 LV  
0 0.112393 -0.0546 0.2987 0.0364 1.0526
5 0.111857 -0.0534 0.2959 0.0339 1.0526
10 0.110276 -0.0496 0.2874 0.0265 1.0526
15 0.081897 0.0187 0.1938 0.0220 1.0534
20 0.082017 0.0184 0.1945 0.0227 1.0534
25 0.081633 0.0194 0.1923 0.0205 1.0534
30 0.068949 0.0545 0.1385 -0.0741 1.0538
35 0.069339 0.0533 0.1408 -0.0717 1.0538
40 0.069731 0.0521 0.1432 -0.0693 1.0538
45 0.096364 -0.0176 0.2396 -0.0129 1.0530
50 0.096829 -0.0187 0.2421 -0.0106 1.0530
55 0.098117 -0.0220 0.2492 -0.0041 1.0530
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responsibility of balancing reactive power in the case of the 
fixed schedule of discrete control devices. Also, both 

loss P  and LV  are regulated well in each DORPD cycle. 
 

Case 2 
The proposed two-stage stochastic programming is to 

capture the stochastic behavior of the wind speed and 
load within the hour. The initial numbers of switching 
compensators could be achieved from Case 1 in 0-15 
interval simulation results. For GA, the population size is 
100, crossover rate is 0.7, and mutations rate is 0.2. When 
the number of generations reaches 100, GA will stop 
automatically. For IPM, 2m+1 times DORPD is used to 
evaluate the expected real power loss while considering the 
constraints.  

Based on Eq. (13), the first-stage decision for com-

pensators is carried out and will be implemented during the 
hour. After uncertainty is unfolded, the second-stage 
decision will be obtained from DORPD execution cycle 
with the same objective function as Case 1. Then, the 
schedule of discrete control devices will be performed 
together in the 15 min interval. Similarly, generators are 
adjusted according to load demand. The optimization 
results are presented in Fig. 3 and Table 4.  

From the results above, the schedule of compensators is 
fixed during the hour and compensator 4 has the same 
schedule with Case 1, which means the proposed method 
can provide an appropriate schedule for compensator 4 
under uncertainty effects. The tap ratios and generator 
reactive outputs are both far away from the boundaries in 
each interval. In other words, the changed dispatch of 
reactive power caused by the fixed schedule of com-
pensators can be balanced and coordinated appropriately. 

Compared with Case 1, Ploss and LV  in Case 2 are close 
match in most instances (the difference between two 
cases is shown in the bracket). The small differences 
indicate that the proposed method can achieve a similar 
voltage profile. A relatively large difference of Ploss and LV  
is observed from Table 4 in 30-45 min interval. Since the 
load passed into off-peak level in this period, which results 
in a relatively large difference in compensators schedule 
between Case 2 and Case 1. 

 
Case 3 

To demonstrate the effects of proposed method, com-
parison study is performed. In this case, the schedule of 
compensators is determined based on the idea of time-
interval-based approach. The mean value is used to 
represent the one-hour load demand. Then, the schedule of 
compensators as the first-stage decision is carried out by 
DORPD. The second-stage decision will be obtained from 
the same procedure mentioned in Case 2. 

As shown in Fig. 4, the schedule of compensators is kept 
at constant during the hour but in different switching 
numbers compared with Case 2. In addition, Ploss and LV  

 
Fig. 3. The schedule of discrete control devices in Case 2
 

Table 4. Optimization result of Case 2 

Time(min) Ploss QG1 QG2 QG6 LV  

0 0.112460 
(0.06%) -0.0569 0.3271 0.1561 1.0529 

(0.03%)

5 0.111920 
(0.06%) -0.0557 0.3242 0.1535 1.0529 

(0.03%)

10 0.110329 
(0.05%) -0.0519 0.3157 0.1459 1.0529 

(0.03%)

15 0.081935 
(0.05%) 0.0206 0.1684 0.0290 1.0520 

(-0.14%)

20 0.082054 
(0.05%) 0.0203 0.1690 0.0294 1.0520 

(-0.14%)

25 0.081673 
(0.05%) 0.0213 0.1670 0.0279 1.0518 

(-0.15%)

30 0.069036 
(0.13%) 0.0579 0.0936 -0.0434 1.0511 

(-0.26%)

35 0.069432 
(0.13%) 0.0568 0.0959 -0.0411 1.0511 

(-0.26%)

40 0.069820 
(0.13%) 0.0556 0.0982 -0.0388 1.0511 

(-0.26%)

45 0.096364 
(0.00%) -0.0176 0.2396 0.0771 1.0530 

(0.00%)

50 0.096829 
(0.00%) -0.0187 0.2421 0.0794 1.0530 

(0.00%)

55 0.098117 
(0.00%) -0.0220 0.2492 0.0859 1.0530 

(0.00%) Fig. 4. The schedule of discrete control devices in Case 3
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are increased or reduced to a different extent according to 
the difference between Case 3 and Case 1. 

For comparison purpose, the results of three cases are 
summarized together in Table 6. The total operating times 
of compensators NC and OLTC NK, the mean value of real 
power loss Pഥloss , the mean value of voltage of all load 
buses Vഥ  and standard deviation of generator reactive 
power outputs D(QG) are investigated here. 

To calculate KN , the result of each case in 0-15 interval 
is supposed as the initial tap ratios of transformers. 
Operating times of an OLTC is defined as the difference 
of tap ratios. In Case 2, CN  is reduced about 64% from 
Table 6, which indicates that the proposed method 
considering CACs can avoid excessive operations of 
compensators under uncertainty effects. On the other hand, 
the response of generators (relatively larger G D(Q ) ) and 
OLTC (acceptably increased KN ) show that the second-
stage decision can effectively handle the uncertainty. Note 
that the total operating times of compensators and OLTC is 
also reduced.  

In Case 3, NC is reduced even more than Case 2 since 
the inappropriate representation of the one-hour load 

demand is utilized, however, it brings in negative impacts, 
such as the increased 	Pഥloss , almost double NK  and 
decreased 	V	ഥ . For Pഥloss  and V	ഥ , Case 2 is very close to 
Case 1 and better than Case 3, which means a suitable 
voltage profile can be achieved by the proposed method. 

 
5.2 IEEE 118-bus system 

 
Case 1 

Similar to IEEE 14-bus system, the optimization result is 
obtained for IEEE 118-bus system without considering the 
MADSON constraints. 

As can be seen in Fig. 5, compensators are intended to 
inject relatively more banks at the first and last 15 min 
intervals, whereas relatively few at the middle 30 min 
intervals. This feature is consistent with pattern of load 
evolution. It is apparent that compensator 1 is maintained 
at the minimum value during the hour and other 
compensators are scheduled differently. On the other hand, 
transformer tap ratios are relatively stable during the hour 
compared with compensators. In other words, the voltage 
profile of this test system can be regulated appropriately 
by the compensators and generators. Ploss and LV  for each 
interval are presented in Table 7. Due to the limitation, 
QG is not shown for this test system. 

 

 
Fig. 5. The schedule of discrete control devices in Case 1 

 
Table 7. Optimization result of Case 1 

Time (min) Ploss  
0 1.317759 1.0476 
5 1.309949 1.0477 
10 1.286937 1.0478 
15 0.875555 1.0500 
20 0.877279 1.0500 
25 0.871757 1.0500 
30 0.689953 1.0510 
35 0.695537 1.0510 
40 0.701144 1.0509 
45 1.084717 1.0488 
50 1.091463 1.0488 
55 1.110133 1.0487 

LV

Table 5. Optimization result of Case 3 
Time 
(min) Ploss QG1 QG2 QG6 LV  

0 0.112617 
(0.20%) -0.0594 0.3570 0.0993 1.0526 

(0.00%) 

5 0.112073 
(0.19%) -0.0581 0.3540 0.0967 1.0526 

(0.00%) 

10 0.110471 
(0.18%) -0.0543 0.3454 0.0889 1.0526 

(0.00%) 

15 0.081930 
(0.04%) 0.0188 0.1862 -0.0598 1.0530 

(-0.04%)

20 0.082049 
(0.04%) 0.0185 0.1869 -0.0591 1.0530 

(-0.04%)

25 0.081666 
(0.04%) 0.0196 0.1847 -0.0612 1.0530 

(-0.04%)

30 0.068999 
(0.07%) 0.0562 0.1209 -0.1051 1.0487 

(-0.49%)

35 0.069395 
(0.08%) 0.0551 0.1232 -0.1028 1.0487 

(-0.49%)

40 0.069785 
(0.08%) 0.0539 0.1255 -0.1004 1.0487 

(-0.49%)

45 0.096409 
(0.05%) -0.0198 0.2684 0.0184 1.0532 

(0.02%) 

50 0.096888 
(0.06%) -0.0210 0.2710 0.0208 1.0532 

(0.02%) 

55 0.098174 
(0.06%) -0.0242 0.2782 0.0275 1.0531 

(0.01%) 

 
Table 6. The control performance of three Cases for IEEE 

14-bus System 
 Case 1 Case 2 Case 3 

NC 14 5 (-64.29%) 4 (-71.43%) 
NK 16 19 (18.75%) 31 (93.75%) 

D(QG1)	 (pu) 0.0398 0.0420 (5.34%) 0.0423 (6.11%) 
D(QG2) (pu) 0.0571 0.0845 (47.96%) 0.0867 (51.93%) 
D(QG3) (pu) 0.0406 0.0707 (74.16%) 0.0761 (87.59%) 

Pഥloss(pu) 0.089950 0.089997 (0.0526%) 0.090038 (0.0976%)
V	ഥ (pu) 1.0532 1.0522 (-0.09%) 1.0518 (-0.13%) 
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Case 2 
In this case, the uncertainty is modeled using TPEM and 

the optimization result is presented in Fig. 6 and Table 8. 
From Fig. 6, the schedule of compensator 1 is as same as 

Case 1, which indicates the appropriate schedule for 
compensator 1 is also achieved by the proposed method 
under uncertainty effects. In addition, the schedule of 
transformer tap ratios is still stable under the fixed schedule 
of compensators. In Table 8, Ploss and LV  come much 
close to Case 1 in most intervals, which means a suitable 
voltage profile is obtained due to the proposed method.  

 
Case 3 

The schedule of compensators is obtained based on the 
mean value of the one-hour load demand. It is observed 
from Fig. 7 that the schedule of transformer tap ratios is 
almost the same with Case 2 and Case 1. However, the 
schedule of compensators differs largely from other cases. 
In other words, in this test system, various compensator 
schedules can exist with little influence on the schedule of 
transformer tap ratios. Therefore, the coordination between 
compensators and generators would be the key issue for the 
desired voltage profile. Table 9 details Ploss and LV  in each 
interval. 

Table 10 compared optimization results for the three 
cases. In Case 2, NC	is reduced significantly due to the 
consideration of uncertainty and CACs. NK and the total 

operating times of compensator and OLTC are also 
reduced. In other words, frequent and excessive switching 
operations of discrete control devices can be avoided 
effectively. The increased mean value of standard deviation 
for all generator reactive power outputs Dഥ(QG) clearly 
shows that the advantage of regulating characteristic of 
generators is taken by the proposed method. 

Compare with Case 1. Pഥloss in Case 2 and 3, is bound to 
increase due to the limited operating times of discrete 
control devices. However, in Case 2, the acceptable 
increase of Pഥloss  indicates that the proposed method can 
achieve a similar voltage profile with Case 1. Also, V	ഥ  is 
well regulated within the very small difference. 

The proposed method utilized in Case 2 for the two test 
systems is performed on a PC with Inter(R) Core(TM) i7-
4790 4.0GHz CPU. In this paper, GA is parallelized in 
Master-slave model to improve the computation perfor-

 
Fig. 6. The schedule of discrete control devices in Case 2 
 

Table 8. Optimization result of Case 2 

Time (min) Ploss  
0 1.318112 (0.03%) 1.0475 (-0.01%) 
5 1.310284 (0.03%) 1.0476 (-0.01%) 
10 1.287222 (0.02%) 1.0477 (-0.01%) 
15 0.875588 (0.00%) 1.0501 (0.01%) 
20 0.877310 (0.00%) 1.0501 (0.01%) 
25 0.871793 (0.00%) 1.0501 (0.01%) 
30 0.690203 (0.04%) 1.0514 (0.03%) 
35 0.695769 (0.03%) 1.0513 (0.03%) 
40 0.701360 (0.03%) 1.0513 (0.03%) 
45 1.084758 (0.00%) 1.0488 (0.00%) 
50 1.091506 (0.00%) 1.0488 (0.00%) 
55 1.110180 (0.00%) 1.0487 (0.00%) 

LV

 
Fig. 7. The schedule of discrete control devices in Case 3 
 

Table 9. Optimization result of Case 3 

Time (min) Ploss  
0 1.318789 (0.08%) 1.0475 (-0.02%) 
5 1.310933 (0.08%) 1.0475 (-0.02%) 
10 1.287793 (0.07%) 1.0476 (-0.01%) 
15 0.875552 (0.00%) 1.0500 (0.00%) 
20 0.877276 (0.00%) 1.0500 (0.00%) 
25 0.871755 (0.00%) 1.0500 (0.00%) 
30 0.689956 (0.00%) 1.0511 (0.01%) 
35 0.695532 (0.00%) 1.0511 (0.02%) 
40 0.701132 (0.00%) 1.0511 (0.02%) 
45 1.084883 (0.02%) 1.0488 (-0.01%) 
50 1.091639 (0.02%) 1.0487 (-0.01%) 
55 1.110339 (0.02%) 1.0486 (-0.01%) 

 
Table 10. The control performance of three cases for IEEE 

118-bus system 
 Case 1 Case 2 Case 3 

NC 49 13 (-73.50%) 18 (-63.27%) 
NK 7 5 (-28.57%) 4 (-42.86%) 

Dഥ(QG)(pu) 0.0398 0.0420 (5.34%) 0.0423 (6.11%) 

Pഥloss(pu) 0.99268196 0.992840394 
(0.016%) 

0.99296498 
(0.028%) 

Vഥ (pu) 1.0494 1.0494 (0.01%) 1.0493 (-0.001%)

LV



A Two-stage Stochastic Programming Model for Optimal Reactive Power Dispatch with High Penetration Level of Wind Generation 

 62 │ J Electr Eng Technol.2017; 12(1): 53-63 

mance with 8 processors. The average computing time for 
IEEE 14-bus and IEEE 118-bus system are 93s and 413s, 
respectively, which has been reduced by 77.5% and 75.8% 
compared with the serial GA. Note that the calculation 
speed could be further sped up with more processors 
utilized in parallel GA. Therefore, the proposed method 
could satisfy the requirement for application. 

 
 

6. Conclusions 
 
This paper presents a two-stage stochastic programming 

model for optimal reactive power dispatch with high 
penetration level of wind generation. The potential impacts 
of uncertainty of wind speed and load on voltage control 
performance are regarded by converting a DORPD model 
into a two-stage stochastic programming problem while 
considering the costs of adjusting the compensators. 

The stochastic behavior of wind speed and load is 
simulated using TPEM. To solve this large-scale mixed-
integer nonlinear stochastic programming, a hybrid GA-
IPM is developed, in which GA deals with the discrete 
variables and IPM achieves the fast convergence. 
Additionally, parallel GA and a quadratic DORPD model 
are utilized to reduce the computational burden. The 
proposed method is implemented and analyzed on the 
IEEE 14-bus and IEEE 118-bus system. Case studies show 
that excessive operations of compensators are avoided 
effectively due to the consideration the uncertainty and 
CACs. The total operating times of discrete control devices 
is reduced as well. The similar voltage profile of system is 
achieved with the acceptable expense of a small increase in 
real power loss. 
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