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Abstract

This paper discusses real-time peak shaving algorithms for a large-scale battery energy storage
system (BESS). Although several transmission and distribution functions could be imple-
mented for diverse purposes in BESS applications, this paper focuses on a real-time peak
shaving algorithm for an energy time shift, considering wind power generation. In a high wind
penetration environment, the effective load levels obtained by subtracting the wind generation
from the load time series at each long-term cycle time unit are needed for efficient peak
shaving. However, errors can exist in the forecast load and wind generation levels, and the
real-time peak shaving operation might require a method for wind generation that includes
comparatively large forecasting errors. To effectively deal with the errors of wind generation
forecasting, this paper proposes a real-time peak shaving algorithm for threshold value-based

peak shaving that considers fuzzy wind power generation.
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1. Introduction

Recently, we have been being experiencing a severe climate change because of increased
CO; emission rates resulting from the increased energy demand for industrial development.
Several organizations around the world are looking for various ways to solve this problem.
One solution might be the application of energy storage systems, which can play an important
role in actively coping with the problem resulting from the variability of renewable energy
resources, by storing energy that can later be consuming as needed. This paper focuses on the
application of a battery energy storage system (BESS).

A BESS has several functions [1-4] that can be implemented to support a transmission and
distribution grid. Among these, suppressing the peak load demand and equalizing the load
levels with a large-scale BESS is a long-term cycle application. This function is referred to as
an energy time shift. In the daily load curve for a system, there is a difference between the
peak and minimum load levels. Another long-term cycle function of system marginal price
(SMP)-based shaving can be implemented by a wholesale purchasing agency to maximize the
benefit from charging and discharging schedules.

Power management systems (PMSs) for a large-scale BESS were proposed in [5]. A PMS
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is used to obtain data for monitoring the system condition and
selecting the active and reactive power settings for a local or
dispersed power conditioning system (PCS) for the BESS. The
ultimate goal of a PMS is maintaining the interoperability of
the BESS with the operation strategies for an external electri-
cal system implemented for reliability. The facilities for the
demonstration research with a 4 MW and 8 MWh BESS at
‘Jochun’ was tested in the long-term and short-term cycle oper-
ation modes.

This paper proposes a real-time peak shaving algorithm that
considers wind power generation. As in [6], the algorithm us-
ing a particular level of wind penetration employs the effective
load curves, which are obtained by subtracting the wind gen-
eration from the load time series at each long-term cycle time
unit. However, it should be noted that there are errors in the
forecast load and wind generation values, and the real-time
peak shaving operation might require a wind generation method
with comparatively large forecasting errors. To effectively cope
with the wind generation forecasting errors, this paper employs
fuzzy wind power generation curves in a real-time algorithm for
threshold value peak shaving. This paper includes illustrative
examples to show the effectiveness of this real-time algorithm

for peak shaving.

2. Peak Shaving Algorithm

The applicable schemes for using large-scale batteries in power
systems can essentially be divided into long-term and short-
term cycle modes. Peak shaving for an energy time shift can be
considered to be the main function of battery energy storage in
a long-term cycle operation. As in [5], several other long-term
cycle operation functions could be described, considering sys-
tem security. However, based on the purpose, the total state of
charge (SOC) of the participating BESS modules with a PCS
must be in an adequate range to be ready just in case, and the
active and reactive power ordered by the PCS of the BESS can
be used for system margin enhancement, loss minimization, etc.
Short-term cycle operation with a BESS includes the mitiga-
tion of the fluctuating characteristic of renewable energy and
frequency regulation with automatic generation control (AGC)
or governor free (GF) actions.

In the literature, there are several approaches to peak shav-
ing with energy storage devices. In [7], off-line and on-line
peak shaving algorithms were described for a local load with
renewable energy sources. The off-line algorithm can provide
scheduling with the assumption that the real load curve is known
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in advance; the on-line algorithm might then include the uncer-
tainty of the load curve. In [8], fundamental algorithms for peak
shaving were proposed. In [9], a fuzzy load model for uncer-
tain load curves was adopted in the scheduling formulation for
peak shaving. In [9], a model predictive control method was em-
ployed to reduce the peak electricity demand in building climate
control based on spot price forecasting. This paper describes
a peak shaving method that determines a charging/discharging
schedule to minimize the peak shaving threshold value, Pgpqqe,

considering the load data.

2.1 Charging/Discharging Model for BESS

To determine the charging and discharging schedule for the long-
term cycle operation of the BESS, a BESS model is needed that
explains the behavior for the given charging and discharging
actions by the PCS in the system. The most important aspect
of this model is the SOC characteristic, which depends on the
active power injection and consumption.

Through the observation of the equivalent circuit from the
viewpoint of the change in SOC during operation, the following
difference equation can be obtained:

Ep(k+1) = (1=7)Ep(k) — (1£a)(1 8) Pe(k)AT (1)
where the following notations can be made:

Ep(k): state of charge at k,

Pg(k): power output at the point of k,

AT': long-term time unit (30 min),

a: coefficient of loss by converter loss,

B: coefficient of loss by battery current loss,

~: coefficient of self-discharging.

In the model of Eq. (I)), the loss terms totally depend on the
active power output, which is the control input at each time
period. As seen, two “=£” signs are used for the loss coefficients
in Eq. (). If Pp(k) is positive, “+” is used; otherwise “-”
is taken. It should be noted that a positive P (k) represents
the discharging state. The difference Eq. is adequate for
the scheduling problem of peak and SMP shaving, because it
explains the long-term cycle charging and discharging behaviors

in terms of the change in the SOC of the BESS.
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2.2 Peak Shaving Formulation

This subsection describes the fundamental peak shaving formu-
lation. This algorithm is used to determine the charging and
discharging schedule using the load data.

min Py e — Pﬁll
s.t. Pp(k) = P(k) = Pgpaye + Py
Ep(k+1) = (1-~)Eg(k)
— (L£a)(1+B)Pp(k)AT

@)
Pp,.., < Pp(k) < Pp,,,.
EB... < Ep(k) < Ep,,.
Ep(M —1)=Ep,
k=M, --- N
where Py, ., is the threshold value for peak shaving, and

Pﬁll is that for load filling. This algorithm has the purpose of
minimizing Py, .., during discharging periods and maximizing
Pﬁll during charging periods. In Eq. (Z) Py (k) denotes the load
level at time k. In Eq. (2), M and N stand for the starting and
ending times for the scheduling; Py, (k) represent the scaled-

and Pp,  are the
minimum and maximum designed power outputs, respectively;
FE B and £ B

SOC, respectively, and corresponding constraints are needed to

down load level at time period k; Pp

min

are the minimum and maximum limits of the

min max

prevent over-charging and discharging; and E'p, is the initial
SOC right before the starting period of the scheduled discharge.

3. Wind Power Generation Forecasting Based
on Fuzzy Modeling

In probability theory, a normal or Gaussian distribution is a
very commonly occurring continuous probability distribution.
Normal distributions are extremely important in statistics and
are often used in the natural and social sciences for real-valued
random variables whose distributions are unknown.

Different probability distribution functions may be selected
for different kinds of uncertain values [10]. The normal distri-
bution function is used in this paper. The general formula of
the probability density function for a normal distribution with

uncertain variable x is given below:

1 (x—p)2
T, l,0) = e 202
f(@, p,0) o

—oo<z< o0

3

o>0
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Figure 1. Normal distribution curve.

where x is the uncertain variable for the probability function;
is the mean value of the uncertain value, also called the location
parameter; and o is the standard deviation of the uncertain
value, also called the scale parameter. The shape of the plot of
the normal probability density function is shown in Figure 1. In
this paper, the normal distribution is converted into trapezoidal
fuzzy curves with four discrete points. The normal distribution
curve is constructed based on wind power generation data with

a sampling time of 30 min.

Power load data, especially for residential loads, are variable
and uncertain. For example, the variability of the electricity
consumption of a single residential customer generally depends
on whether family members are home and on the time of use
of a few high-power appliances with relatively short usage
durations during the day, and is subject to very high uncertainty.
Probabilistic analysis and fuzzy theory can be used to analyze
the uncertainty of the load [11].

A method for describing a membership function involves the
application of data on the average value m and maximum error
e of the input quantity. In practical applications, this method
may be used to describe the values of wind power generation.
In this case, the fuzzy parameters can be defined as follows
[12]:

fuzzy(1) =p—e
fuzzy(2) = p— =
2 4)
fuzzy(3) = p+ 5
fuzzy(4) = p+e

where e is the maximum error.

A trapezoidal fuzzy curve can be drawn using Eq. and is
shown in Figure 2. This paper calculates the fuzzy percentage
using this curve. Four fuzzy forecasting wind power generation
curves are made using these percentages. The formula for
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Fuzzy(1) Fuzzy(2) Fuzzy(3) Fuzzy(4)

Figure 2. Trapezoidal fuzzy model derived from given normal distri-
bution function.

calculating the percentage is as follows:

) = fuzzy(j) — p

Percentage(j x 100[%]

)
fuzzy(j) : Fuzzy valueinEq. @), j=1,---,4

Wind power generation data are forecast using these four
fuzzy forecasting wind power generation curves for real-time
peak shaving. If the real wind power generation at an arbitrary
point is smaller than the value of fuzzy(1), the real-time peak
shaving algorithm chooses the fuzzy(1) wind power genera-
tion curve after this arbitrary point. Similarly, if the real wind
power generation at an arbitrary point is greater than the value
of fuzzy(4), the real-time peak shaving algorithm chooses the
Sfuzzy(4) wind power generation curve after this arbitrary point.
However, if the real wind power generation is in the region
of fuzzy(1)-(4), the method used to forecast the wind power
generation changes. For example, if the real wind power gen-
eration is located in the region of fuzzy(1)-(4), the algorithm
calculates the percentage of real values from the nearest point,
which becomes the starting point of the forecast wind power
generation.

In the real-time operation, the applied level of wind gener-
ation is based on the fuzzy wind model at the following time
period, which depends on the wind generation level at the pre-
vious long-term time unit. When the error between the real
and forecast wind generation values is less than fuzzy(1) at the
previous time unit, the wind generation is set to the lowest wind
generation corresponding to the value with the error of fuzzy(1).
When the error is between fuzzy(1) and fuzzy(2) or between
Sfuzzy(3) and fuzzy(4), the wind generation level with the same
fuzzy membership value is chosen. When the error is between
Suzzy(2) and fuzzy(3), the wind generation level with the same
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Figure 3. Normal distribution and trapezoidal fuzzy curves for wind
power generation.

distance from fuzzy(2) is employed. When the error is greater
than fuzzy(4), the wind generation is set to the largest level in
the fuzzy wind model. This forecasting is performed for the

following long-term time periods.

4. Simulation and Results

This section describes the process of creating the trapezoidal
fuzzy curve and gives corresponding examples of the applica-
tion of the peak shaving algorithm. The wind power generation
was classified on an hourly basis to generate the trapezoidal
fuzzy curve and each fuzzy percentage. Thereafter, a normal
distribution was made using the wind power generation data
with respect to time. Figure 3 shows a trapezoidal fuzzy curve
that was drawn using this method. The fuzzy model might
have different values over the entire period. This paper uses a
48 x 4 matrix that includes the end-points of the trapezoidal
models at all the periods using historical power generation data
with 30-min intervals. Table 1 lists the percentages of the end-
points of the fuzzy model at each time period in reference to
the expectation, as determined in this paper.

The same fuzzy model could also be applied to load curves,
as in [7]. However, in [7], the method used for the fuzzy model
construction was not mentioned. This paper adds wind power
generation data to the grid and performs real-time peak shaving
under the assumption that the real load data are obtained. This
paper illustrates the applicability of a fuzzy curve for wind
power generation data. Figures 4 and 5 show the real load curve
and real wind power generation curve, respectively. Figure
6 shows four fuzzy curves based on the forecast wind power
generation curve. In Figures 4-6, the z-axis denotes the long-
term time unit (30 min) intervals over the course of a day.
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Table 1. Percentages of end-points of fuzzy model for wind power generation

Time unit Fuzzy 4 (%) Fuzzy 3 (%) Fuzzy 2 (%) Fuzzy 1 (%)
1 32.596 16.298 -16.298 -32.596
2 31.063 15.531 -15.531 -31.063
3 29.529 14.764 -14.764 -29.529
4 30.207 15.103 -15.103 -30.207
5 30.885 15.442 -15.442 -30.885
6 30.916 15.458 -15.458 -30.916
7 30.946 15.473 -15.473 -30.946
8 30.183 15.091 -15.091 -30.183
9 29.421 14.71 -14.71 -29.421
10 28.088 14.044 -14.044 -28.088
11 26.756 13.378 -13.378 -26.756
12 27.747 13.873 -13.873 -27.747
13 28.739 14.369 -14.369 -28.739
14 30.22 15.11 -15.11 -30.22
15 31.701 15.85 -15.85 -31.701
16 32.201 16.1 -16.1 -32.201
17 32.701 16.35 -16.35 -32.701
18 31.648 15.824 -15.824 -31.648
19 30.596 15.298 -15.298 -30.596

20 31.402 15.701 -15.701 -31.402
21 32.209 16.104 -16.104 -32.209
22 27.639 13.819 -13.819 -27.639
23 23.07 11.535 -11.535 -23.07

24 21.678 10.839 -10.839 -21.678
25 20.287 10.143 -10.143 -20.287
26 20.734 10.367 -10.367 -20.734
27 21.18 10.59 -10.59 -21.18

28 21.523 10.761 -10.761 -21.523
29 21.866 10.933 -10.933 -21.866
30 23.334 11.667 -11.667 -23.334
31 24.801 12.4 -12.4 -24.801
32 30.303 15.151 -15.151 -30.303
33 35.805 17.902 -17.902 -35.805
34 41.757 20.878 -20.878 -41.757
35 47.71 23.855 -23.855 -47.71

36 44.635 22.317 -22.317 -44.635
37 41.559 20.779 -20.779 -41.559
38 41.383 20.691 -20.691 -41.383
39 41.208 20.604 -20.604 -41.208
40 37.661 18.83 -18.83 -37.661
41 34.114 17.057 -17.057 -34.114
42 35.815 17.907 -17.907 -35.815
43 37.515 18.757 -18.757 -37.515
44 38.47 19.235 -19.235 -38.47

45 39.425 19.712 -19.712 -39.425
46 36.841 18.42 -18.42 -36.841
47 34.258 17.129 -17.129 -34.258
48 33.427 16.713 -16.713 -33.427
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Figure 4. Example of real load curve.
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Figure 5. Example of wind power generation curves.
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Figure 6. Trapezoidal fuzzy model based on expected wind power
generation curve.

Figure 7 shows the peak shaving results using real load and
real wind power generation data. Figure 8 illustrates the peak
shaving results using real load and forecast wind power gener-
ation data. Figure 9 shows the peak shaving results using real
load and wind power generation data after the application of
the fuzzy model. In Figures 7-9, the x-axis denotes the real-
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Figure 7. Peak shaving results using real wind power generation
curve.

30
25
§20
= 15 -
g —— Scaled load
o 10 4
— Cut load
5,
0
- TN OMOOONWNASTINOMO N LW 0 AT
MM OWOMOUOMWOUOMWOOMUWOUONWOWOON OO
S H A A NN NSO NN N O OO

Real-time period

Figure 8. Peak shaving results using forecast wind power generation
curve.

time unit (2 min). This paper reports a real-time peak shaving
simulation that divides the long-term time unit into 10 sections
because the fuzzy wind power generation changes as a result
of the real wind power generation data at each point. In other
words, Figures 7-9 show the combined peak shaving results at
the corresponding real-time units.

In a real-time simulation performed using the developed real-
time mode emulator, one day is divided into five portions, and
each portion starts from an long-term time unit: 1, 11, 21, 31,
or 41. This is because different errors are expected between the
real and forecast values of the wind power generation data at
each portion. In other words, the error rate might be different
depending on the time of day. Table 2 lists the error at each long-
term section, 1-10, 11-20, 21-30, 31-40, and 41-48, compared
to the results when using the real wind power generation data.
In the process of peak shaving, the effective load was adopted,
which is the load subtracted by the wind power generation. As
listed in the table, the error rates at each section are smaller
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Figure 9. Peak shaving results using fuzzy model of wind power
generation.

Table 2. Error rate of peak shaving results

Error rate (%)

LT time Using real and Using real and
unit forecast data fuzzy data
Scaled Cut load Scaled Cut load
load load
1-10 1.92 1.10 1.14 1.12
11-20 0.67 6.38 0.19 0.39
21-30 0.76 0.84 1.31 1.17
3140 2.02 0.93 2.72 0.23
41-48 1.28 2.97 1.21 2.67
Average 1.33 2.44 1.31 1.11
LT, long-term.

when using the fuzzy model of wind power generation. The
same characteristic is seen in the overall error rate.

5. Conclusions

This paper presented long-term cycle control strategies for a
large-scale BESS. The main focus of this paper was illustrat-
ing the applicability of a fuzzy model for the forecast wind
power generation as an input for real-time peak shaving. This
operation mode could be used to perform an energy time shift,
and minimize the threshold value obtained from the difference
between the upper and lower loads. This paper included an illus-
trative example showing the performance of the algorithm with
real load and wind power generation data using real, forecast,
and fuzzy model-based curves with the developed real-time

operation simulator.
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