• Title/Summary/Keyword: wind load modelling

Search Result 27, Processing Time 0.022 seconds

Conceptual Design and Wind Load Analysis of Tall Building

  • Lee, S.L.;Swaddiwudhipong, S.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • The paper describes the conceptual design, structural modelling and wind load analysis of tall buildings. The lateral stiffness of the building can be obtained economically through the interaction of core walls with peripheral frame tube and/or bundle of frame tubes and integrated design of the basement. The main structural components should be properly distributed such that the building will deflect mainly in the direction of the applied force without inducing significant response in other directions and twist. The cost effectiveness can be further enhanced through close consultation between architects and engineers at an early stage of conceptual design. Simplified structural modelling of the building and its response in three principal directions due to wind load are included. Effects of the two main structural components on the performances of a 70-story reinforced concrete building in terms of peak drift and maximum acceleration under wind load are discussed.

  • PDF

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.283-294
    • /
    • 2020
  • In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

Simulation for Voltage Variation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems on Simulink (Simulink에서 영구자석 동기형 풍력발전시스템의 전압변동에 대한 시뮬레이션)

  • An, Hae-Joon;Kim, Hyun-Goo;Kim, Hong-Woo;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

  • PDF

Power Quality Analysis of Wind Power System Embedded in Distribution Networks (풍력발전시스템의 배전계통 연계운전 시 전의품질 해석)

  • Kim, Eung-Sang;Roh, Pyung-Kweon;Chu, Jin-Bu;Chang, Byung-Tae;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.229-231
    • /
    • 1999
  • This paper deals with electromagnetic transient modelling of wind power system embedded in distribution networks. Wind power system consists of induction generator link reactor, distribution line, and controlled load unit. The introduction of embedded wind power system presents a new set of conditions to networks both with respect to power quantify needed to be transported and power quality such as sag swell, very short interruption, and flicker. This paper investigates the transient behavior of voltage, frequency, and load flow in wind driven induction generation system embedded in distribution networks.

  • PDF

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

Concept and Prelimimary Design of Large Offshore wind turbine system (해상용 대형 풍력 발전 시스템의 개념 설계와 기본 설계에 관한 연구)

  • Jung Ji-Young;Shin Hyung-Ki;Park Kwang-Kun;Choi Woo-Young;Park Ji-Woong;Kim Ho-Geon;Lee Soo-Gab;Smith Robert Rawlinson;Jamieson Peter;Quarton David
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.241-244
    • /
    • 2006
  • Recently wind turbines become large, constructed as farms and going out to offshore. Different design approach from onshore is needed for offshore wind turbine. At this paper concept and preliminary design of an offshore wind turbine of 3MW rated power are performed. The concept design started from modelling of the generator and gearbox. With these modelling the optimum specifications was acquired. Integrated type of drive train is designed with all parts are mounted on the tower top as the offshore maintenance strategy. At the preliminary stage control system, power production algorithm and safety system are designed. Load calculation is also performed. The 3MW offshore wind turbine concept/preliminary design and the process of design are obtained as results.

  • PDF

Meteorological basis for wind loads calculation in Croatia

  • Bajic, Alica;Peros, Bernardin
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.389-406
    • /
    • 2005
  • The results of reference wind speed calculation in Croatia as a base for the revision of the Croatian standards for wind loads upon structures are presented. Wind speed averaged over 10 minutes, at 10 m height, in a flat, open terrain, with a 50-year mean return period is given for 27 meteorological stations in Croatia. It is shown that the greatest part of Croatia is covered with expected reference wind speeds up to 25 m/s. Exceptions are stations with specific anemometer location open to the bura wind which is accelerated due to the channelling effects of local orography and the nearby mountain passes where the expected reference wind speed ranges between 38 m/s and 55 m/s. The methodology for unifying all available information from wind measurements regardless of the averaging period is discussed by analysing wind speed variability at the meteorological station in Hvar.

Modeling and Voltage Variation Simulation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems (영구자석 동기형 풍력발전시스템 모델링 및 전압변동 시뮬레이션)

  • Kim, Hong-Woo;An, Hae-Joon;Jang, Gil-Soo;Kim, Sung-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.116-123
    • /
    • 2009
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.