• 제목/요약/키워드: weighted Bergman spaces

검색결과 58건 처리시간 0.023초

COMPACT INTERTWINING RELATIONS FOR COMPOSITION OPERATORS BETWEEN THE WEIGHTED BERGMAN SPACES AND THE WEIGHTED BLOCH SPACES

  • Tong, Ce-Zhong;Zhou, Ze-Hua
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.125-135
    • /
    • 2014
  • We study the compact intertwining relations for composition operators, whose intertwining operators are Volterra type operators from the weighted Bergman spaces to the weighted Bloch spaces in the unit disk. As consequences, we find a new connection between the weighted Bergman spaces and little weighted Bloch spaces through this relations.

WEIGHTED COMPOSITION OPERATORS FROM BERGMAN SPACES INTO WEIGHTED BLOCH SPACES

  • LI SONGXIAO
    • 대한수학회논문집
    • /
    • 제20권1호
    • /
    • pp.63-70
    • /
    • 2005
  • In this paper we study bounded and compact weighted composition operator, induced by a fixed analytic function and an analytic self-map of the open unit disk, from Bergman space into weighted Bloch space. As a corollary, obtain the characterization of composition operator from Bergman space into weighted Bloch space.

THE BERGMAN METRIC AND RELATED BLOCH SPACES ON THE EXPONENTIALLY WEIGHTED BERGMAN SPACE

  • Byun, Jisoo;Cho, Hong Rae;Lee, Han-Wool
    • East Asian mathematical journal
    • /
    • 제37권1호
    • /
    • pp.19-32
    • /
    • 2021
  • We estimate the Bergman metric of the exponentially weighted Bergman space and prove many different geometric characterizations for related Bloch spaces. In particular, we prove that the Bergman metric of the exponentially weighted Bergman space is comparable to some Poincaré type metric.

WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES

  • Koo, HYUNGWOON;NAM, KYESOOK;YI, HEUNGSU
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.975-1002
    • /
    • 2005
  • On the setting of the upper half-space H of the Eu­clidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < $\infty$ and nonorthogonal projections for 1 $\leq$ p < $\infty$ . Using these results, we show that Bergman norm is equiva­ lent to the normal derivative norms on weighted harmonic Bergman spaces. Finally, we find the dual of b$\_{$^{1}$.

THE RADIAL DERIVATIVES ON WEIGHTED BERGMAN SPACES

  • Kang, Si-Ho;Kim, Ja-Young
    • 대한수학회논문집
    • /
    • 제18권2호
    • /
    • pp.243-249
    • /
    • 2003
  • We consider weighted Bergman spaces and radial derivatives on the spaces. We also prove that for each element f in B$\^$p, r/ there is a unique f in B$\^$p, r/ such that f is the radial derivative of f and for each f$\in$B$\^$r/(i), f is the radial derivative of some element of B$\^$r/(i) if and only if, lim f(tz)= 0 for all z$\in$H.