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WEIGHTED HARMONIC BERGMAN
FUNCTIONS ON HALF-SPACES

HyunewooN Koo, KYEsSOOK NAM, AND HEUNGSU Y1

ABSTRACT. On the setting of the upper half-space H of the Eu-
clidean n-space, we show the boundedness of weighted Bergman
projection for 1 < p < oo and nonorthogonal projections for 1 <
p < oo. Using these results, we show that Bergman norm is equiva-
lent to the normal derivative norms on weighted harmonic Bergman
spaces. Finally, we find the dual of bL.

1. Introduction

For a fixed positive integer n, let H = R"~! x R, be the upper half-
space where R denotes the set of all positive real numbers. We write
point 2 € H as z = (#/, z,) where 2/ € R*"! and 2,, > 0.

For a > ~1,1 < p < oo, and Q C R, let b5(Q) denote the weighted
harmonic Bergman space consisting of all real-valued harmonic functions
u on §2 such that '

1/p
lullzz e = ( /Q W(Z)l”dVa(Z)) < o0,

where dV,(z) = dist(z, 0Q)* dz and dz is the Lebesgue measure on R".
Here dist(z, 8Q) denotes the Euclidean distance from z to the boundary
of . We let b5, = bh(H) and b° = B,

Harmonic Bergman spaces are not studied as extensively as their
holomorphic counterparts and most work on Bergman spaces (even in
the holomorphic case) has been done for bounded domains.
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Because H is a unbounded domain, it causes some problems. For
example, the weighted harmonic Bergman kernel is not even integrable
unlike the case of bounded domains. However we overcome this difficulty
by noticing the b-cancellation property which we mention in section 5.
Note that H is a product space. This fact allows us to use the integration
by parts (especially) with respect to the last component and this gives us
reproducing properties of weighted harmonic Bergman functions. Fur-
thermore, unlike the case of the unit disc, H is invariant under dilations,
i.e., for every r > 0,

{rz|zeH}=H.

Therefore we can use the change of variable freely with respect to the
last coordinate which helps us to estimate the size of some integrals that
appear in this paper.

bP(Q2) is studied in [10] and [7)] on the setting of upper half-space and
bounded smooth domain in R"™ respectively.

Recently, for any range a > —1, the explicit formula of weighted
harmonic Bergman kernel for b5, was found in [8]. In this paper, we show
that some of the known results for b” as well as weighted holomorphic
Bergman spaces continue to hold on b}, for any range a > —1 with this
weighted harmonic Bergman kernel for b5,

This paper is organized as follows. In section 2, we review the weighted
harmonic Bergman kernel of b2(H) and some useful results that are
proved in [8].

Section 3 is devoted to proving that the weighted harmonic Bergman
projection, initially defined as the orthogonal projection of L2 (H) onto
b2, extends to a bounded projection of L% (H) onto b5 for the range
1 < p < 0o (Theorem 3.1). From this result, we easily get (bh)* = b3
(Theorem 3.2).

In section 4, we define nonorthogonal projections of L5 (H) onto b5
and then we find a necessary and sufficient condition for these projec-
tions to be bounded including the case p = 1 (Theorem 4.3). We use
these projections to find dense subspaces of b5 which have “nice” van-
ishing properties near oo (Theorem 4.4) and then we show that every
weighted harmonic Bergman function can be reformulated in terms of
its fractional normal derivatives (Theorem 4.7). We also give the norm
equivalence result for weighted harmonic Bergman functions through
these projections (Theorem 4.8).

In final section, we show that any Bloch function can be reproduced
from its fractional normal derivative of any positive order (Theorem
5.9). Also, we show that the dual space of b}, can be identified with
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the harmonic Bloch space (Theorem 5.12) and then we give the norm
equivalence result for harmonic Bloch functions (Theorem 5.13).

CoONSTANTS. Throughout the paper we use the same letter C' to
denote various constants which may change at each occurrence. The
constant C may often depend on the dimension n and some other pa-
rameters, but it is always independent of particular functions, points or
parameters under consideration. For nonnegative quantities A and B,
we often write A < B or B 2 A if A is dominated by B times some
inessential positive constant. Also, we write A = B if A < B and
B < A

2. Bergman kernel for bi and some results

In this section, we review the weighted harmonic Bergman kernel for
b2 and recent results which are proved in [8].

Let P(z,w) be the extended Poisson kernel on H, i.e.,

2 oz, tw,
nV(B) |z —w®
where z,w € H and W = (w', —wy,). Note that foreach j =1,...,n—1,
D.,P(z,w) = —Dy,;P(z,w) and D,, P(z,w) = Dy, P(z,w). Therefore
we can show from (2.1) that for multi-indices 8 = (f1,...,8,) and
Y= (717 s 7771),

D?D}P(z,w) = D?...DE»DY ... DI P(2,w)

— (_1)71+~--+7n—1Dz,611+71 o Df:'*'""P(z,w)

(2.1) P,(w) := P(z,w) =

(2.2)

= (=)t (2 — @)
|z — wnt2bl+2h

where f3 ., is a homogeneous polynomial of degree 1+ ||+ |v|. (In fact,
f8,y is harmonic but we do not need this fact here.)

Let k be a nonnegative integer and let D denote the differentiation
with respect to the last component. If u € b5(f2), then we know from
the mean value property, Jensen’s inequality and then Cauchy’s estimate
that

(2.3) [Dku(z)| < dist(z, aQ)—(n+a)/p_k

for each z € Q).
Let F3 (6 > 0) be the collection of all functions v on H satisfying

lv(z)] < zn” and let F = Ug>oFg. If v € F, then v € Fj for some
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B > 0. In this case, we define the fractional derivative of v of order —s
by
1 * 1 !
D~* = — 7 t)dt
WD) = g | ETE D)
for the range 0 < s < 3. Here, I is the Gamma function.

If u € b5, then for every nonnegative integer k, D*u € F by (2.3).
Thus for s > 0, we define the fractional derivative of u of order s by

Dy = D—([S]—S)D[S]u’

where [s] is the smallest integer greater than or equal to s and D = DV is
the identity operator. If s > 0 is not an integer, then —1 < [s]—s—1 < 0
and [s] > 1. Thus we know from (2.3) that for each z € H and for every
u € bh,

1 x
Diu(z) = ——/ tll=s=1Dlsly (2 2, + t) dt
=T o "

always makes sense.

For o > —1, the Bergman kernel for b2 is given by

Ro(z,w) = Co DM Py (w),

where
(_1)[a]+12a+1

MNa+1)
It is shown in [1] that the Bergman kernel for b? is —2D P, (w).

Let s > —n — o and let 8 be a multi-index. Then

1
B1ys
(25) DzDana(Zyw) 5 |Z—m|n+a+lﬁl+s

(2.4) Co =

for z,w € H. Thus, we have
(2.6) |1Ba(z, )l pa iy S Zrte)(1/a=1)

for 1 < g < o0.
For a function u on H, define us(z) = u(?, z, + 6) for 6 > 0. The
following propositions are used many times in this paper.

PROPOSITION 2.1. Let & > —1, 1 < p < 0o and let u € bh. Then

li — = 0.
Jim, llus — ull L2 ()
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PROPOSITION 2.2. Let b < 0 and let a +b > —1. Then,

a+b b
/ lz—w{’“’“ dw =~ z,

as z ranges over all points in H.

The following lemma comes from integration by parts with respect
to the wy-variable and this plays an important role in this paper. Let

={z € R" | 2z, > =6} for § > 0. Thus for each 6 > 0, Hs is a
half-space that contains H properly.

LEMMA 2.3. Let § > 0,1 < p < oo and let u € b5 (Hs). Suppose that
k and m are nonnegative integers. Then for every z € H and for each
a,b>0,

/H [DkHP (v, awn)] [D™u (W', bw,)] wiFdw

(=)™ (m k)
= e prE u(z).

We have the following reproducing properties of integral operators
with the weighted harmonic Bergman kernel.

PROPOSITION 2.4. Let § > 0, a > —1,1 < p < oo and let s > —1.
Then for every u € b (Hg) and for each z € H,

uw=Lm@wwwmw

THEOREM 2.5. Let o > —1 and let 1 < p < 0o. If u € Wi, then for
every z € H,

u(z) =/Hu(w)Ra(z,w) dVy (w).

3. Bergman projection

In this section, we study the weighted harmonic Bergman projection.
Because b2 is a closed subspace of L2(H), there is a unique orthogonal
projection I, of L2(H) onto b2:

/f o(2,) dVa (w)

for every f € L2(H) and for each z € H. We know from (2.6) that
Ru(z,-) € b, for all 1 < ¢ < co. Thus, I, is well defined whenever
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f € IA(H) for 1 < p < co. Moreover Theorem 2.5 implies that Il is
the identity on b} for 1 < p < oo. Therefore we only need to show the
boundedness of I, to complete the proof of the following theorem.

THEOREM 3.1. Let o > —1. If 1 < p < oo, then Il, is a bounded
projection of L% (H) onto bh.

Proof. Let f € L. Then (2.5) implies that for z € H,

Mo f(2)] S / |f(w _'m ———— dV,(w).

Let q denote the index conjugate of p. After applying Holder’s inequality
to the following two functions

wiitea \ VP wAra/p \ 1/
|f (w)] W ] l—z‘;—m—n+g )
we see that

Maf(2)”

wiHe/a w1/ P/q
/ |f(w)| ]z ln+°‘ wn dw - mwn dw

Hence we get from Proposition 2.2 that

wy, (/e
/ T f(2)[P dVa( / / |f(w Ts —mpre w® dw 21T/ 52 dz,

After applying Fubini’s Theorem and then Proposition 2.2 once again,
we get

“Hllf“LP (H) ~ < Hf“LP H)"
Therefore the proof is complete. O

After we define nonorthogonal projections Ilg in section 4, we gener-
alize Theorem 3.1. (See Theorem 4.3.) We also show that I, f does not
belong to L} (H) for some f € L (H) in Theorem 4.3. This shows the
failure of Theorem 3.1 for p = 1.

The following theorem with o = 0 case is proved in [10]. Because we
have LE-boundedness of I, the proof of the following theorem is very
similar to that of [10]. Therefore we omit the proof.

THEOREM 3.2. Ifa > —1 and 1 < p < oo, then (bh)* &£ bd, where ¢
is the index conjugate of p.
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4. Nonorthogonal projections

In this section, we study nonorthogonal projections of L5 (H) onto b5,
for all range 1 < p < o0. We call them nonorthogonal because they are
not orthogonal when acting on the Hilbert-space L2(H). Let a, 3 > —1
and let 1 < p < co. Define Il on LL(H) by

Msf(z) = /H £(w)Ra(z, w) dVi(w)

for z € H. Here Rg(z,w) = CgD5+!P,(w) and Cj is the constant given
in (2.4).

One of the advantage of Ilg is that I1g is bounded on L} (H) whenever
a < (3 unlike the Bergman projection II,. From this L.-boundedness of
IIg, we obtain dense subspaces of bL which have nice vanishing properties
near oo ; we use these subspaces to find the dual space of b. (See section
5.) Also, Ilg leads to fractional normal derivative norm equivalence on
weighted harmonic Bergman spaces.

We first estimate the size of Rg(z,-) on a thin cone with vertex z
and axis of symmetry parallel to the zp-axis. Fix 29 = (0,1) for the
rest of this paper. Then we can check easily from (2.2) that for each
nonnegative integer k

fre1(z0) = (=1)**'2(n = n--- (n+ k - 1)/nV(B) #0,

where fx11(20) = fl0,...0),0,...,0k+1)(%0) in (2.2). Because fi41 is a ho-
mogeneous polynomial of degree k + 2, there exists €9 > 0 such that

(4.1) 0 < fr+1(20) fosr1(2) =~ |z|k+2, |z| = zn,

as z ranges over all points in I, (0) := {z € H | z,, > ¢¢|2/| }. Thus we
have from (4.1) that

fres1(20)DF PP, (w) = fk+|1 Z( Z_O)Q—i,c-T:izgizg %)

(2 +wy)kt?
Tz —w|ntk
N 1
T (2 + wp )R’
for z€e H, w € T, (Z) :={w € H| (2 + wy) > eolz’ —u'| }.
This estimate guarantees the following lemma, which is a key in show-

ing the failure of boundedness of IIg on L5(H) for a +1 > (8+ 1)pin
Theorem 4.3.

(4.2)
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LEMMA 4.1. Let 8 > —1 and let z € H. Then we have
1

(zn + wn)n‘f‘ﬁ

as w ranges over all points in I (Z).

|Rp(z, w)| ~

Proof. If 8 is an integer, then the proof follows easily from (4.2).
Assume that 8 is not an integer. Let k = [3]. Note that k—3—-1> —1
and note also that w € I'¢,(Z) implies w+ (0, t) € I's,(Z) for every ¢t > 0.
Hence we get from the definition of Rg and (4.2) that

oo
|Rg(z, w)| = / tF=P=1DFLP, (W' wy, 4+ t) dt
0

> / ~ g Fir1(20) D*L P, (w0, wy, + t) dt
Ooo tk—ﬂ—l

~ /0 (2n + wp + £)7HE

_ 1

T (zn + wy) B

as w ranges over all points in I';,(Z). Therefore the proof is complete. O

dt

Before we prove Theorem 4.3, we need one more lemma.

LEMMA 4.2. Leta > —1,1<p<oocandletz € H. Ifa+1 < (8+1)p
and q is the index conjugate of p, then Rﬁ(z,w)wg—a € LL(H) as a
function of w.

Proof. If p=1, then a < 8. Thus we get from (2.5) that

B—a
= Wn —(n+a)
1 Rs(2, w)wy, “lloo 55161% T < 2, M < oo,

Therefore Rg(z, w)wh © is uniformly bounded on H.

Assume that p > 1. Then we have —1 < (8 — a)q + «, because
(a+1) < (B8+1)p. Therefore we see from (2.5) and Proposition 2.2 with
a=(n+pB)g—nand b= (n+ a)(l — q) that

(43) ”Rﬂ(Z, w)wg_a||Lg(H) S Z;(n+a)/p.
This completes the proof. .

In the following theorem, we find a necessary and sufficient condition
for Iz to be a bounded projection on L% (H). We use this theorem to
find some useful dense subspaces of b5 and to show the norm equivalence
result on weighted harmonic Bergman spaces.
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THEOREM 4.3. Let a,8 > —1 and let 1 < p < oco. Then llg is a
bounded projection of L5,(H) onto b if and only if a +1 < (8 + 1)p.

Proof. Suppose that Ilg is bounded on L5 (H) and o+ 1 > (84 1)p.
If p=1, then a > (. Consider f(z) = z;ﬂXB(ZOJ)/V(B(zo,l)) where
B(2p,1) is an open ball in R™ centered at 29 with radius 1. Then clearly
f € LL(H). We know from the mean value property that

pf(:) = | fw)Raz,w) dVp(w)
_'————JL———— Z, W w
N V(B(Z(); 1)) /B(zo,l) Rﬁ( ’ ) d
= Rg(z,zo).

Note that T, (0) C I'¢,(Z0). Then Lemma 4.1 and (4.1) imply that
Mo g = | 1R 20 Va2

>/ Ldz
™ Jrey0) (L+ 2)7HP

N/ 4
Fso(o) 1+ |Z|n+ﬁ ‘

Let S, = {z € H| 2z € T¢,(0), |z| =1 }. Then we get from polar
coordinates that

Tn—l

I > / A / P2 do(¢) dr
s fll 1 r) 2 o T+ s, (n do(C)
oo rn—1+a
N/O ——1+Tn+ﬁdr

= 00.

(Here do denotes the normalized surface area measure on the unit sphere
in R™.) This shows that TIzf is not in L} (H). Therefore o < 3.

If 1 < p < oo, then (8 — a)g+ a < —1, because o +1 > (B + 1)p.
(Here q is the index conjugate of p.) Fix z € H. Notice that

{w' € OH | 2, > g0]2’ —w'| } x (0,1) C T, (2).
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Thus we get from Lemma 4.1 that

[ [Rstzswput=
H
(B-a)g+o
P / o dw
Teo(2) (2n + wp) 0N
1 (B-a)g+a
/ / = dw,, dw'’
{w'€8H|zn>e0|2'—w'|} JO (zn+wn)("+ﬂ)q

)" 1 " Bt
> - - - —a)g+a
2 (&) G | e an

= 00.

AV (w)

14%

This shows that Ilzg fails to exist at 2 for some g € L5 (H), because dV,
is a positive o-finite measure on H.

For the other direction, assume that o +1 < (8 + 1)p. We first show
that IIz is the identity operator on Y5. Let u € b5. Then us € bﬁ(H(;)
for § > 0. Fix z € H. Then Proposition 2.4 implies that

Mpu(z) — u(z)] < [ /H (u(w) — us(w)) Bz, ) dVp(w) | + Jus(2) — u(2)].

Applying Holder’s inequality and Lemma 4.2 to the above integral and
then letting 6 — 0%, we see from Proposition 2.1 that Igu(z) = u(z).
Therefore Ig is the identity on bh. Next, we show that II5 is bounded
on LL(H). If p = 1, then we get from (2.5) and Fubini’s Theorem that

1Tl ep) < /H /H | (w) Rg(z, w)| dVj(w) dVa(2)

(14) < [ [ s s uld

for f € L1 (H). Because a < 3, we get T fllzy ey S N Flly ey, after
applying Proposition 2.2 to the inner integral in (4.4).
Let 1 < p < oo and let f € L5(H). Then we obtain from (2.5) that

MefI 5 | |f(w>|~—_éw aVj(w)

/lf |z— l"+ﬁ why, dw.

Note that 0 < a+ 1 < (8 + 1)p implies —(1 + 8)/¢q < (8 — @)/p and
—(1 4 a)p < 0. Therefore we can choose a real number s which satisfies
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both —(1+6)/g < s < 0and —(1+a)/p < s < (B8 — a)/p. After
applying Holder’s inequality to the following two functions

1 1
B wh—e /p . Wb /q
wy,®[ f(w)| [P W\ TgpE )

we see that

_ 1/p 1/q
s 5 [ PP =2 A R
~\Ju |z — w|nt+h H |z — w8

Because —(1+ 8)/q < s < 0, we see —1 < 3+ ¢s and gs < 0. Therefore
we get from Proposition 2.2 that

wﬁ—ps 1/p
Mef (o)l S 7 ( Jrwp dw) .

Note that —(1+ a)/p < s < (8 — a)/p implies —1 < ps + o and ps +
a— 3 < 0. Hence after applying Proposition 2.2 once again, we see that

ng+a

p < P q,B—ps =
M6 gy S [ )Pt [ —Hrs dedu
Sy

Therefore the proof is complete. O

In the proof of the above theorem, we showed that Rg(zo,-) ¢ L& (H)
for o > 3. With a simple modification of the proof, we can also show
that for each z € H, Rg(z,-) ¢ LL(H) whenever o > 3. This implies
that the weighted harmonic Bergman kernel R,(z,-) ¢ LL(H).

Now we obtain useful dense subspaces of b5, for all range 1 < p < 0o
from the boundedness of I13. For 8 > —1, denote Sg be the vector space
of functions u harmonic on H that satisfy

u(2)] 5

1+ 2P
as z ranges over all points in H.

THEOREM 4.4. Let « > —l and let 1 <p < oo. Ifa+1< (B+1)p,
then S, is dense in bf.
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Proof. Let u € Spyg. Because 1+ 2] = |z — Zg|,

/‘u )P dVa(2) < /(1+Iﬁ"+ﬂ) &

~ n
~ /H PRI

Since a+ 1 < (8+ 1)p, we see a +n < (B + n)p. Thus after applying
Proposition 2.2 to the above integral, we see that u € bh.

To prove density, let u € b,. Choose a sequence of compact sets (K)
such that K; C Kj+1 and H = UKj. Setting u; = uxk;, we have

Moy s [ s avitw)

<
~ 14 [2[n+B

Thus Hgu; € S,4 5. Furthermore we see from Theorem 4.3 that
ITgu; — wll Lz = 1Ts(u; — Wz < Mg llug — ullzg @ — 0

as j — oo. Hence Spyg is dense in b% and the proof is complete. O

The following lemma is used to show the fractional normal deriva-
tive norm equivalence result on weighted harmonic Bergman spaces in
Theorem 4.8. If 7 is a nonnegative integer, then it is proved in [10].

Therefore to complete the proof of the following lemma, we only need
to show the case that ~ is not a nonnegative integer.

LEMMA 4.5. Let « > -l and let 1 <p <oco. If 1+ a)/p+7 > 0,
then

22DV ull 2y S Null g @y
for u € b5,

Proof. Let z € H, u € b} and let 3 = a+1. Because a+1 < (8+1)p,
we know from Theorem 4.3 that

u(z) = lgu(z) = /Hu('w)Rﬂ(z,w) dVs(w).
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Let k = [y] if v > —1 and let k = 0 if v < —1. Then we get from (2.5)
and Fubini’s theorem that

|DVu(z)| 5/ |D*u(2, 2 + )|t dt
0
o0
5/ / |u(w)| lD’;nRg((z’,zn+t),w)|dVﬂ('w)tk_7_1 dt

tk‘—'y—l
/ |u(w |/ R SR dt dVs(w).

Note that |(2/, zn, +t) —W| = |z —wW| +t for w € H, t > 0. Thus we have
00 tk—’y—
D) s [ ) [ e dt dVj(w)
(4.5) / [u(w ||z w|"+5+7 dw,

where we used change of variable ¢t — |z—w|t. If p =1, then a+vy > —1.
Therefore we get from Fubini’s Theorem that

llzgmumm)s/ /Iu |\z—“]"+5+’7 dw dV,(2)

’H’a
(4.6) /|u Y wh / |Z_w|n+ﬂ+,ydzdw.

After applying Proposition 2.2 to the inner integral in (4.6), we see that
lza DV ull s ery S NwllLy ey

Assume that 1 < p < co. Because (1 + a)/p+7v > 0, we see that
0<n/p<(n+B)/p+v<n+p+~. Choose n/p <A< (n+p3)/p+~.
Then after applying Holder’s inequality in (4.5) to the following two
functions

ﬁ/p wg/q

| =@ |z — @ty

|u(w)

we see that (4.5) is less than or equal to

1/q
@7 (/'” '|z—w|*p ) (/ |z—w|n+ﬂ+v i ) |

Here g denotes the index conjugate of p. Because A < (n+ 8)/p+1y, we
seen+ 03— (n+6+v— ANg < 0. Thus after applying Proposition 2.2
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to the second integral in (4.7), we know that

1/q
~ A— _( +ﬁ)/
(/ |2—w|(n+ﬂ+’7 A)g ) Ry T,

Therefore, we get from Fubini’s Theorem that

13Dl g / / fu(w “I*P dw 22=F+wn g,
. P 22 B+Ap—n
(4.8) = / |u(w)|Pw /—_———dzdw.
H Fun H |z —wP

Because n/p < ), we see « — 3+ Ap—n > —1. Therefore after applying
Proposition 2.2 once again to the inner integral in (4.8), we get

HZ?LID'YU”IZ;Q(H) S ”u”iﬁ(H)'

This completes the proof. O

We use the following lemma to switch the order of integrations that
appear in Theorem 4.7.

LEMMA 46. Let a > —1, 1 < p < o0 and let (n+ o)/p +~ > 0. If
s > —1 is not an integer and s+~ +1 > 0, then for z € H

[S]+’r ot
/ / |z — (w', —(1 + t)w )|n+[s](1 ) o dw ¢ dt

Proof. Let z € H and let k¥ = [s]. Then k is a nonnegative integer
and k — s > 0. Note that

1 < P(z, (W', (14 t)wy))
|z — (W', = (14 thwn) [P ™ (20 4 (1 + t)wy)o+T

Then we see from change of variable (1 + t)w, — r that

< <[ w71§+7 d k—s—1 4
I th=s=1 gt
~ / / (20 + (1 + D) wn)FHL(1 + wy) rra) /ey 40

k+y .
/ / (2n + r)FH1(1 + t + ) (vt /Dty dr
(1 +t (n+a)/p— (k+1)tk: s—1 dt

= I1.




Weighted harmonic Bergman functions on half-spaces 989

If v > 0, choose 0 < A1 < s + 1 satisfying A1 < (n + «)/p. Then
0o poo 1 1 (nt+a)/p—(k+1)
s / / PN thi) o=l gy
o Jo (n+r)Q+r)m (1 + t)(nte)/p=X :

because v >0, \; >0, k—s—1>-lands— A1 +2> L.
If v < 0, choose 0 < Ay < s+ 7+ 1 satisfying Ao < (n + a)/p+ 7.
Then

1+ t)(n+a)/p— (k+1)

<
115 /0 /O (Zn + ,r.)k+1(1 + 7')>\2 dr (1 n t)(n+a)/p+7——>\2
< 00,

because k+v > —1, 14+ -y > 1, k—s—1>—-land y—A2+s+2> 1.
Therefore the proof is complete. a

In the following theorem, we show that every function u € b5, can be
reproduced by its fractional normal derivatives.

THEOREM 4.7. Let a > —1,1<p< oo and let a+1 < (B+ 1)p. If
u € bh and (1+a)/p+~ >0, then for z € H

Cs
Cp+y

g(wpD7u)(z) = u(2),

where

[ = [v] if v>-1
0 if v< 1.

Proof. Let z € H. Then we know from Lemma 4.5 that Ilg(w}D7u)(z)
is well defined and clearly, us € b5 (Hs) for § > 0. Suppose 8 and ~ are
not integers. Set k = [3]. Then k — 3 > 0. Hence, by similar argument
to the proof of Proposition 2.4, we see that Ig(w};D"us)(z) becomes

/wa DYus(w)Rp(z, w) dVg(w)

F(k ﬂ // Dk+1P (w (1 +t)wn)][pvu5(w)tk —B— 1] w”kdtdw
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after applying change of variable ¢ — tw,. Note from (2.3) that

[DVus(w)| < /oo | Dlus(w’, wr, +t)[ ¢ at
0

oo tl v 1
< / dt
0 (wn+ 34 t)n+a)/pH
" (wn + 8) ) /ptr T (1 wy) (e /Pty

Because a+1 < (B+1)pand (14+a)/p+v >0, wehave B+~v+1> 0
and (n + a)/p ++ > 0. Therefore we know from (2.2) and Lemma 4.6
that

/oo / | (D us(w)] DFFLP, (w, (1 + tywn) | wi™* duw t+-5-1 gy

7+k bt
/ / |z — -1+ t)w )|n+k(1 + wn)("+a)/”+v dwt dt

This estimate guarantees us switching the order of integrations above.
Therefore we know from Fubini’s Theorem that ITg(w}D7us)(2) equals

P k+1p (0 w W) wI e dw #5-B-1 gt
P(k—m/o /H[D P (w/, (1 + t)wn) ] [DVug(w)] w) ™ dw -1 dt

Hence, we see from the definition of DVu(w), Fubini’s Theorem and then
change of variable s — sw,, that IIg(w)DVus)(z) becomes

C'B = k+1 W w
ATy [P B 00 40)

o0
/ [Dlw (w', wn + s)] st ds w) e dw ¢F81 gt
0

) A AR ORI

[Dlus(w', (1 + s)wn)J wh™ dw =71 ds t*B1 gy,

(Here we see with a simple estimate much easier than the proof of Lemma
4.6 that switching the order of integrations is permissible.) Therefore
we know from Lemma 2.3 that the above becomes

<( 1)b+h+1( H_k)lcﬁ/ / s ikA dsdt> ugs(2).

T'(k— B)T (2+ s + t)l+k+T
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After changing of variables, we see that
oo poo  Gl—y-1 yk—fB-1
/o /0 (; p +tt)l+k+1 dsdt
— 275% /01 sBH1(1 = s) 71 s /01 #HB(1 — £)kB-1 g4

1 TE+y+ 10—k = b)
28+7+1 Fl+k+1)

Consequently, Hg(waDVu;)(z) = Cg/Cpiyus(2).
The case that either 8 or + is an integer can be proved similarly.
Now, we can make our usual limiting argument for us with Lemma 4.5
and Theorem 4.3 to obtain the desired result for an arbitrary function
u € bh. Therefore the proof is complete. O

In the following theorem, we show that the norm of a weighted
Bergman function is equivalent to the norm of the fractional normal
derivative of this function.

THEOREM 4.8. Let o > —1 andlet 1 <p < o0. If 1+ a)/p+7 >0,
then

lull e gy = lwaDVull g

as u ranges over all bh-functions.

Proof. We know from Lemma 4.5 that wiD"u € LE(H) for u € .
Thus we get from Theorem 4.7, Theorem 4.3 and Lemma 4.5 that

lullzz gy ~ Mat1 (WD w)ll 2@y S lwiDullz g S llull 2z
as u ranges over all bh-functions. This completes the proof. O

See Theorem 5.13 for the corresponding result of the case p = oco.

5. The harmonic Bloch space as the dual space of b}!

It is shown in [10] that the dual of b! can be identified with the space
of harmonic Bloch functions modulo constant because of the following
bl-cancellation property: If u € b', then fH u(z)dV(z) = 0. It is shown
in [4] and [5] that this kind of vanishing property also holds not only for
bl but for b5 with an appropriate range of p. However at the present
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paper, we only need the following bL-cancellation property: If u € bl,
then

(5.1) /Hu(z) dVy(z) = 0.

(In fact for u € bl, [5yu(z’,8)dz’ = 0 for every § > 0. See [4] and 5]
for details and related facts.)

Now we describe the harmonic Bloch space. A harmonic function «
on H is called a Bloch function if

llullg = sup wn|Vu(w)| < oo,

where the supremum is taken over all w € H and Vu denotes the gra-
dient of u. We let B denote the set of Bloch functions on H and let B
denote the subspace of functions in B that vanish at zg. The space Bis
a Banach space under the Bloch norm || ||.

In this section, we prove that the dual space of b}, can be also iden-
tified with B as is the case for b'. Because Ry(z,-) is not in LL(H),
we modify Ro to R, so that for each z € H, Ry(z,-) € LL(H). (See
Proposition 5.2.) With this modified Bergman kernel R, we define II,
on L*(H) and then we show that I1, is bounded and linear from L°°(H)
into B. (In fact, this map is onto. See Corollary 5.10.) We use this map
I, to get (BL)* = B.

For this purpose, we first define

Ea(z,w) = Ry(z,w) — Ro(z0,w)

for z,w € H and then we estimate the size of fia(z,w). To do so, we
need a lemma.

LEMMA 5.1. Let | and m be nonnegative integers. If 0 < a < b and
0 <ec<d, then
al c
pmAl  gmet

g(la—cl+|b—dl)<§nl—d+b7d%>.

Proof. If | = 0, then the proof is trivial. So assume that [ > 0.
Without loss of generality, we may assume b < d. Let B = bm+D/t gnd
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D = dm+D/! Then,

@ _dl o1 ja_ <
B! DU~ p-1)m/l ’B D
1 1 1 1
< - Sl [Tl P
(56.2) S SiDmn (aiB D’ + D|a c|)
_a 1 1 la — ¢
T p-Dm/t |B T D| T pi-Dm/ip”

Let I and II denote, respectively, the two summands of (5.2). Note that
dmAD/L_ D/t < mT_H( d— byam/.

Because a < b < d, we easily see that

< a dm/t <1 1
Isle—d p=1ym/L p(m+1) /1 g(m~+1)/1 ~ b~ d|b7;g-
Clearly, we have
IT<|a—c|/b7d.
Consequently,
I+IIS(la—cl+|b—d|)/b™d
and the proof is complete. O
From this lemma, we easily get the following result.
PROPOSITION 5.2. Let a > —1. Then
= |z — 20 |2 — 20
<
Reles I S ety ] * o0 - wie

for all z,w € H.

Proof. From the definition of P,(w) and Lemma 5.1, we easily get
that for each nonnegative integer k,

k2 - .
+ wp)? (14 wy)?
D*+1P, (w) — D*1P, < (zn +wn) ‘
| (w) 20 (W)] S ; 2 — @tk |z — @R
(5 3) |Z—Zo| |Z——Z0'
. ™z —w[ R —w| |z = W[z — TR

This completes the proof of this theorem for o is a nonnegative integer.
So assume that « is not an integer. Let k = [a]. Then k is a nonnegative
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integer and kK — a > 0. Hence we see from the definition of Ea(z, w) and
(5.3) that |R4(2,w)| is less than or equal to some constant times

o0
/ |D*HLP, (W', wy + t) — DFTIR, (W', wy, + t)[tF0 L dt
0

oo tk a—1
< |lz—z
Slexl | {lz—(w',—wn—t>|n+k|zo—(w',—wn—tn

tk—‘a—l
+ dt
|z — (W', —wy, — t)][20 — (W', —wr, — t)l"*’“}
|z — zo] th—a-1 |z — 2] th—a—1
~ p— — dt + — — dt
lz0 =@l Jo (|2 =]+ t)t+* lz—w| Jo (lz20—w|+t)nFk
|2 — 2o z— 2o
~ z —w|"tezy — W z—@lz —lﬁn‘*'a’
0 0

where we used the change of variable t — |z — Wt and t — |2y — W]t.
Therefore the proof is complete. ' O

From Proposition 5.2, we easily see that Ra(z,-) € LL(H) for each
fixed z € H. Thus, we can define II, on L>*(H) by

(5.4) /f a(2, w) dVa(w)

for f € L*°(H). Furthermore by passing the Laplacian through the

integral in (5.4), we see that I, f is harmonic on H. Therefore to com-

plete the proof of the following Proposition, we only need to show that
I, f € B for f € L°°(H) with an appropriate norm bound.

PROPOSITLON 5.3. Let o > —1. Then ﬁa is a bounded linear map of
L*(H) into B.

Proof. Let f € L>°(H). Then, it is easily seen that IL.f(20) = 0. Note
that for each j and for every z,w € H, Dzjﬁ{a(z,w) = D, Ro(z,w).
Therefore we have from (2.5) and Proposition 2.2 that for any j and for
every z € H,

ZnDzj ﬁaf(z) =

wy ,
S ”f“oozn/H E‘de
S 1S lloo-
This shows that I, f € B with [|[TIaf|l8 < ||f]lo, as desired. O

w)[D., Rz, w)] wh dw
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We estimate some integral in the following lemma which is used in
Proposition 5.5.

LEMMA 5.4. Let

L= [ {arpary * araaroe)

forae > —1,a> 0 and let A € (0,1) with a4+ X > 0. Then I,(a) S a*!
if0<a<1andI(a) Sa ™ ifa> 1.

Proof. If 0 < a <1, then

o0 ta o0 toz A1
I ~ dt < dt ~ a* .
o) /0 (a+t)otl(141¢) ™~ /0 al=MoHA(1 4 t) o

If a > 1, then

I A dt S ———dt =~ o
a(@) /0 (L+t)+a+t) ™ /0 e+ (g + t)
Therefore the proof is complete. |

From Lemma 5.4, we get the following proposition easily which is
used in Proposition 5.7 and Proposition 5.11 to guarantee switching the
order of integrations.

PROPOSITION 5.5. Let @ > —1 and let u € Spyo+1- Then
//Iu o(z, w)| dVo(w) dVy(z) < 0.

Proof. Because u € Syyq+1, We see that |u(z)| < |z — §0|—(n+a+1) on
H. Thus we obtain from Proposition 5.2 and polar coordinates that

/1u o2, 0)| dVa(w)

Wiy Wy,
d
e zo|"+°' / { [z =L wn) | (zn + wn)leo — B } .

< 1 /oo ’LU% /oo ,r.n—2 drd
ST —aa — drdw
lz=Zol" ™ \Jo (T+wn)Jo (r+4 (20 +wn))"" K
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o] ,wg o T.n—2
+ / —_— / dr dw
o (zntwn)Jo (r+(1+w,))"™ "

1 o0 wa
~ - n
|z — Zo|mte /0 { (zn + wn) (1 4+ wy)

(87
+ “n dw,,.
(2n + wn)(1 + wy )ot?

Choose A € (0,1) satisfying & + A > 0. Then we get from Lemma 5.4
and polar coordinates that

/ / [u(2) Ra (2 0)| dVa () dVia(2)
HJ/H

) .
1
< dz' 20T 1dz
/0 /8H (7] + (1 +z)" " "
o 1 ! A
+/ / dz' 227" dz
1 SH (|z,l + (1 + Zn))n—i-a n n

< 1 zg-}-)\—l o) zg—)\
e ] —
~ /0' (1 + zn)a+1 2, +/1 (1 + zn)a+1 Zn

< 00,

because 0 < A < 1 and a + A > 0. This completes the proof. O

It is well known that any Bloch function grows at most like a loga-
rithmic function. More precisely if v € B, then

(5.5) |v(2', 2 )] < 2||v[|3(1 + |log zn| + 21og(1 + |2'])).

We can check that there are functions u € b}, and v € B such that
uv ¢ LL(H). However if u € Syta+1, then uv € LL(H) for any v € B.
We show this in the following lemma.

LEMMA 5.6. If « > —1, then for any u € Spyq+1 and for every v € g,
/ lu(2)v(2)| dVa(2) < oo.
H
Proof. Let u € Sj,4q+1 and let v € B. Then we know that

1
< -
u(2)l < [z — Zorrott

on H. Hence we get from (5.5) that

zf:(l + | log zn| + log(1 + |z'1)) :
[ Gl dva( s [ FEEER LT ED) g,
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Note that
log(1+|2|) < 217?122

Because o + 1 > 0, we can choose ) satisfying 0 < A < a + 1. Then we
have

|log zn| S 222y < 12|12 + 272
Therefore after applying Proposition 2.2, we see that

Za +za—A th
/ |'U, |dV ( ) IZ - ZOln+a+1 dz + /H |Z _ §O|n+a+l/2 dz

< 0.

This completes the proof. O

In the following proposition, we show that for each bounded linear
functional defined on b, there is a Bloch function Wthh induces this
functional.

PROPOSITION 5.7. Let o« > —1. If A € (b)*, then there is v € B
such that

Aw) = / w(2)v(2) dVa(2)
H
for all u € Spta+1. Moreover, ||lv|lg < ||A].

Proof. Let A € (bl)*. Then we know from Hahn-Banach Theorem,
Riesz representation Theorem and Theorem 2.5 that there is a function
f € (LL(H))* = L®(H) such that

Aw) = [ w2 f() dVa(2)

for all u € b} with (Al = [[flloo. Let v = II.f. Then we know from

Propostion 5.3 that v € B and ||| S || flleo = ||A]l- If € Spta+1, then
we get from Proposition 5.5 and bl -cancellation property, (5.1) that

[ u@e@ V() = [ wle) [ F)Fale w) ava(u) aviz)
/ f(w / Falz, w) dVa(2) dVa(w)

- / f(w) / w(2) B (), 2) dVia(2) dVia(w)
H H
= A('LL),
and this completes the proof. . O
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We will use the following lemma to prove Theorem 5.9 and Theorem
5.13.

LEMMA 5.8. Ifv € B, then for v>0
lwaD oo < [lvlls-

Proof. If v is a positive integer, then we know from (5.13) of [10] that

(5.6 Do) < 12le.
Wn
Assume that +y is not an integer. Let k£ = [y]. Then k is a positive integer
v

and k — v > 0. Therefore we see from (5.6) that

o0
[DYv(w)| S / |DFv(w’, wy, + t)tF 71 dt
0

(5.7) s [ s
< lvls
~o w% 3

after applying change of variable ¢ — w,t. This completes the proof. [

Now, we extend the domain of ﬁa to the set of all functions f for
which the integrand in (5.4) belongs to LL(H). Then we know from

Lemma 5.6 that Il v is well defined for every v € B.

THEOREM 5.9. Let « > —1 and let v > 0. Ifv € g, then for each
z€eH

I, (w! D) (2) =

=—v(2).
a+'y
_ Proof. Fix z € H. We know from Lemma 5.6 and Lemma 5.8 that
o (waDv)(2) is well defined for any range v > 0. Let 6 > 0. Because
wa|Vus(w)] < (wn + )| Vo(w', wn + 6)| < [vlls

for w € H, we see that vs € B. However vs need not be in B.

Suppose that o and v are not integers. Let k = [a]. Then v > 0 and
k —a > 0. Therefore after applying the change of variable t — twy,, we
see that I, (w)DVvs)(z) becomes

k ) / / DkHP (1 +t)wn)] th—e—1 g [D7vs(w)] w) T dw,

where P, = P, — P,,. Note from (5.3) and (5.7) that
(5.8)  |DFTIE,(w)] S lz0 — WY, [DYos(w)] S (1 +wn) 7
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We can check with this estimate (5.8) that we can apply Lemma 4.6 to
the integral above. After switching the order of integrations above, we
see from change of variable s — sw, that ['(k — a)/Colla(waDvs)(2)
becomes

/oo/ [Dk+113z(w’, (1 +t)wn)] [D”’v,;(w)] wz+k dw tF—1 gt
0 JH

(5.9) _ fﬁ/ooo/:o/H[Dkﬂﬁz(w,’(lﬂ)wn)]

x [D™vs(w', (1 + s)wn)] w™t dw s™ Y dstFe dt,

where m = [y]. Note that v > 0 implies m > 1. The estimate (5.8)
also allows us to integrate by parts (k + 1)-times in the inner integral of
(5.9). Therefore we see that

(5.10) / [DFFLP, (', (1 + t)wn)] [D™vs(w', (1 + s)wp)]wit* duw

_ (=Mt - . . (m+k)!
_W;C(k+l,y)(l+s)7m

1) x [ Pl (1 0) D s (0 1+ )] w7
H

Note that vs(z) — vs(20) € B as a function of z € H. Therefore we know
from (5.6) that for each positive integer [,
1

|Dlus(2)| = | D! (vs(2) — vs(20))| S ot o)

for every z € H. This shows that D'vs is bounded and harmonic on
H for each positive integer I. Hence, we see that the integral in (5.11)
becomes

[ D+ 0,2+ £+ spun)
(5.12) —[D™ s (20 + (0, (2 + t + 8)wn))] } with dwp,.

The estimate (5.6) implies, after applying integration by parts m+j—1
times in (5.12), that (5.10) becomes

(—1)m+k+1(m+k)!
(2+t+ s)mth+l

(vs(z) — vs(20)).
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Consequently, ﬁa( nDa, v5)(2) is equal to
. ( 1)m+k+l m-{—k)'Ca P ’y—ltk—a—l s d
t
( T(k - a)T(m —7) / / 2+t +symiEl ® )
x (v5(2) — vs(0))-

We see that the quantity in parenthesis above becomes Co/Cay~. There-
fore we get

ﬁa(w;{DV'u[;)(z) = ng-v (vs(2) — vs(20))-

We can make our usual limiting argument for v to obtain the desired
result for an arbitrary function v € B from Lemma 5.8 and Proposition
5.3. The remaining cases can be proved similarly using the estimate
(5.5) if necessary (v = 0 case). Therefore the proof is complete. O

From the above, we have Il,v(z) = v(2) for every v € B and for each
z € H. The following result follows directly from Proposition 5.3 and
Theorem 5.9.

COROLLARY 5.10. For a > —1, ﬁa is a bounded linear map from
L>(H) onto B.

Now we show in the following proposition that every Bloch function
induces a bounded linear functional on Sy, 41, hence on bl,.

PROPOSITION 5.11. If @ > —1 and v € g, then the map A defined by
Adw) = / w(2)v(2) AV (2)
H

is a bounded linear functional on Spiq+1 Wwith respect to Lclx-norm.
Moreover, we have ||A| < |lv||B-

Proof. We know from Lemma 5.6 that uv € LL(H) whenever u €
Snta+1. We also know from Theorem 5.9 that

v(2) = %ﬁa(wf{HDaHv)(z).

Therefore we have

A(u)z%‘%’l Hu(z) /H w2 Doy (w)] Ralz, ) dVa(w) dVa(2).

Note from Lemma 5.8 that [|[w@t1D*ly|, < ||vllg. Then we know
from Proposition 5.5 that we can switch the order of integrations above.
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Thus,
Alu) = CQCL:I Hwﬁ“ [D“Hv(w)] /Hu(z)ﬁa(z,w) dVy(2) dVa(w)
_ G w2 D o (w)]u(w) dVa(w),
Ca H

where we used bl -cancellation property (5.1). This shows that
AW < [[vllsliullry ),
as desired and the proof is complete. ]

- By combining Proposition 5.7 and Proposition 5.11, we get the fol-
lowing duality result easily.

THEOREM 5.12. (bL)* = B.
Proof. Define a map ® : B — (b.)* by ®(v) = A,, where »

Av(u):/Hu(z)v(z) dVy(2)

for u € Spya+i1- Then we know from Proposition 5.11 that the linear
map P is a well-defined bounded map with ||A,|| < ||v|lg. We also know
from Proposition 5.7 that ® is onto and [jv||g S ||Av||. Consequently,
[vlls ~ l|Aqll- _

Suppose A, is the zero functional on b}, for some v € B. Note that for

each fixed 2 € H, Ea(z, -) € Sp+a+1 by Proposition 5.2. Then Theorem
5.9 with v = 0 case implies that

0 = Ay(Ra(z,) = Mav(z) = v(2)

for all = € H. This shows that ® is an one-to-one map. Therefore the
proof is complete. O

In the following theorem, we show the corresponding result of the
case p = o0 to Theorem 4.8.

THEOREM 5.13. If v > 0, then ||v||g = ||waD | as v ranges over
all functions in B.

Proof. We may assume that v > 0. Let v € B. Then we know from
Lemma 5.8 that wyD"v € L®°(H). Thus we see from Theorem 5.9,
Proposition 5.3 and then Lemma 5.8 that

lvlls ~ ITa(wi D)z S 1w D [leo S llo]ls-

Therefore the proof is complete. O
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