• Title/Summary/Keyword: weight sensor

Search Result 583, Processing Time 0.022 seconds

Signal Compensation of LiDAR Sensors and Noise Filtering (LiDAR 센서 신호 보정 및 노이즈 필터링 기술 개발)

  • Park, Hong-Sun;Choi, Joon-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, we propose a compensation method of raw LiDAR data with noise and noise filtering for signal processing of LiDAR sensors during the development phase. The raw LiDAR data include constant errors generated by delays in transmitting and receiving signals, which can be resolved by LiDAR signal compensation. The signal compensation consists of two stage. First one is LiDAR sensor calibration for a compensation of geometric distortion. Second is walk error compensation. LiDAR data also include fluctuation and outlier noise, the latter of which is removed by data filtering. In this study, we compensate for the fluctuation by using the Kalman filter method, and we remove the outlier noise by applying a Gaussian weight function.

An Indoor Localization Algorithm based on Improved Particle Filter and Directional Probabilistic Data Association for Wireless Sensor Network

  • Long Cheng;Jiayin Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3145-3162
    • /
    • 2023
  • As an important technology of the internetwork, wireless sensor network technique plays an important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on indoor location accuracy. A location algorithm based on improved particle filter and directional probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. Then the hypothesis test is used to detect whether measurements are in LOS situations or NLOS situations for N different groups. When there are measurements in the validation gate, the corresponding association probabilities are applied to weight retained position estimate to gain final location estimation. We have improved the traditional data association and added directional information on the original basis. If the validation gate has no measured value, we make use of the Kalman prediction value to renew. Finally, simulation and experimental results show that compared with existing methods, the IPF-DPDA performance better.

Robust Data, Event, and Privacy Services in Real-Time Embedded Sensor Network Systems (실시간 임베디드 센서 네트워크 시스템에서 강건한 데이터, 이벤트 및 프라이버시 서비스 기술)

  • Jung, Kang-Soo;Kapitanova, Krasimira;Son, Sang-H.;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.324-332
    • /
    • 2010
  • The majority of event detection in real-time embedded sensor network systems is based on data fusion that uses noisy sensor data collected from complicated real-world environments. Current research has produced several excellent low-level mechanisms to collect sensor data and perform aggregation. However, solutions that enable these systems to provide real-time data processing using readings from heterogeneous sensors and subsequently detect complex events of interest in real-time fashion need further research. We are developing real-time event detection approaches which allow light-weight data fusion and do not require significant computing resources. Underlying the event detection framework is a collection of real-time monitoring and fusion mechanisms that are invoked upon the arrival of sensor data. The combination of these mechanisms and the framework has the potential to significantly improve the timeliness and reduce the resource requirements of embedded sensor networks. In addition to that, we discuss about a privacy that is foundation technique for trusted embedded sensor network system and explain anonymization technique to ensure privacy.

Development of body position sensor device for posture correction training (자세 교정훈련을 위한 체위 변환 감지 센서 디바이스의 개발)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.80-85
    • /
    • 2020
  • Recently the incidence of musculoskeletal disorders in students and office workers is increasing, and the necessity of maintaining correct posture and corrective training is required, but related research is insufficient. In the previous study, a membrane sensor or a pressure sensor was placed on the seat cushion to see the deviation of the body weight, or a sensor that restrained the user was attached to measure the position change. In this study, a sensor device for detecting a position change in consideration of wearing comfort was developed, and the measured angle was verified through an analysis app. A sensor device consisting of an IMU sensor is attached to the cervical spine and vertebra spine to measure the position transformation in the sitting position. The change value of the position measured by the two sensors was converted into an angle, and the angle value is displayed in real time through the analysis app. In this study, the possibility of measuring the real-time change value according to the change in position, the convenience of wearing, and the tendency of angle measurement were proved. Future research should proceed with more precise angle calculation and correction of motion noise.

Evaluation of measuring accuracy of body position sensor device for posture correction (자세교정을 위한 체위변환 감지 센서 디바이스의 정확성 평가)

  • Choi, Jung-Hyeon;Park, Jun-Ho;Kang, Min-Ho;Seo, Jae-Yong;Kim, Soo-Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • Recently Recently, the incidence of spinal diseases due to poor posture among students and office workers is increasing, and various studies have been conducted to help maintain correct posture. In previous studies, a membrane sensor or a pressure sensor was placed on the seat cushion to see the weight bias, or a sensor that restrained the user was attached to measure the position change. In our previous study, we developed a sensor device which can be easily attached to the body with an adhesive gel sheet and that measures and outputs the user's posture and body position in real time, but it has a limitation in the accuracy of the sensor value. In this study, a study was conducted to improve the performance of the position conversion sensor device and quantitatively evaluate the accuracy of the angle conversion measurement value, and a high accuracy with 2.53% of error rate was confirmed. In future research, it is considered that additional research targeting actual users is needed by diversifying posture correction training contents with multimedia elements added.

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF

IoT-based Taking Medicine Automation System

  • Kim, Sun-Ok;Kwon, Eun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • In this paper, it is a system that informs people who take medication periodically to facilitate the convenience of the elderly and the disabled. It is a system that measures the full weight of pills that need to be taken for a week using a weight sensor, and then determines whether or not the pills are taken by measuring the weight of the reduced pills again when the user takes them. For people with disabilities who are unable to move, it includes the function of automatically transporting medicine to the user-set location at the time of use using a line tracer based autonomous vehicle. It is also configured to inform users who have not taken the pill through an alarm that includes visual and auditory functions at a specific time to inform them of this. This work attempts to help users take their medication without forgetting by segmenting the task performance process of such a system through simulations.

Single Gyroscope Sensor Module System for Gait Event Detection (보행시점 검출을 위한 단일 각속도 센서모듈 시스템)

  • Kang, Dong-Won;Choi, Jin-Seung;Kim, Han-Su;Oh, Ho-Sang;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study was to develop the inertial sensor module system to detect gait event using single angular rate sensor(gyroscope), and evaluate the accuracy of this system. This sensor module is attached at the heel and gait events such as heel strike, foot flat, heel off, toe off are detected by using proposed automatic event detection algorithm. The developed algorithm detect characteristics of pitch data of the gyroscope to find gait event. To evaluate the accuracy of system, 3D motion capture system was used and synchronized with sensor module system for comparison of gait event timings. In experiment, 6 subjects performed 5 trials level walking with 3 different conditions such as slow, preferred and fast. Results showed that gait event timings by sensor module system are similar to that by kinematic data, because maximum absolute errors were under 37.4msec regardless of gait velocity. Therefore, this system can be used to detect gait events. Although this system has advantages of small, light weight, long-term monitoring and high accuracy, it is necessary to improve the system to get other gait information such as gait velocity, stride length, step width and joint angles.

Activity and Safety Recognition using Smart Work Shoes for Construction Worksite

  • Wang, Changwon;Kim, Young;Lee, Seung Hyun;Sung, Nak-Jun;Min, Se Dong;Choi, Min-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.654-670
    • /
    • 2020
  • Workers at construction sites are easily exposed to many dangers and accidents involving falls, tripping, and missteps on stairs. However, researches on construction site monitoring system to prevent work-related injuries are still insufficient. The purpose of this study was to develop a wearable textile pressure insole sensor and examine its effectiveness in managing the real-time safety of construction workers. The sensor was designed based on the principles of parallel capacitance measurement using conductive textile and the monitoring system was developed by C# language. Three separate experiments were carried out for performance evaluation of the proposed sensor: (1) varying the distance between two capacitance plates to examine changes in capacitance charges, (2) repeatedly applying 1 N of pressure for 5,000 times to evaluate consistency, and (3) gradually increasing force by 1 N (from 1 N to 46 N) to test the linearity of the sensor value. Five subjects participated in our pilot test, which examined whether ascending and descending the stairs can be distinguished by our sensor and by weka assessment tool using k-NN algorithm. The 10-fold cross-validation method was used for analysis and the results of accuracy in identifying stair ascending and descending were 87.2% and 90.9%, respectively. By applying our sensor, the type of activity, weight-shifting patterns for balance control, and plantar pressure distribution for postural changes of the construction workers can be detected. The results of this study can be the basis for future sensor-based monitoring device development studies and fall prediction researches for construction workers.

Implementation of ACS-based Wireless Sensor Network Routing Algorithm using Location Information (위치 정보를 이용한 개미 집단 시스템 기반의 무선 센서 네트워크 라우팅 알고리즘 구현)

  • Jeon, Hye-Kyoung;Han, Seung-Jin;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • One of the objectives of research on routing methods in wireless sensor networks is maximizing the energy life of sensor nodes that have limited energy. In this study, we tried to even energy use in a wireless sensor network by giving a weight to the transition probability of ACS(Ant Colony System), which is commonly used to find the optimal path, based on the amount of energy in a sensor and the distance of the sensor from the sink. The proposed method showed improvement by 46.80% on the average in energy utility in comparison with representative routing method GPSR (Greedy Perimeter Stateless Routing), and its residual energy after operation for a specific length of time was 6.7% more on the average than that in ACS.