• Title/Summary/Keyword: wave propagation approach

Search Result 158, Processing Time 0.025 seconds

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Comparison in Elastic Wave Propagation Velocity Evaluation Methods (탄성파의 매질 내 이동속도 산정방법 비교)

  • Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.31-37
    • /
    • 2014
  • In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

An effective finite element approach for soil-structure analysis in the time-domain

  • Lehmann, L.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.437-450
    • /
    • 2005
  • In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

Wave Propagation Modeling and Receiving Characteristics for ILS Navigation Signal (ILS 항행안전신호 전파진행 모델링 및 수신 특성 연구)

  • Kyung-Soon Lee;Kyung Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.375-378
    • /
    • 2024
  • The instrument landing system (ILS) is an international standard established by the International civil aviation organization (ICAO) as one of the landing support facilities for aircraft. This system consists of a localizer (LOC) that provides orientation information about the runway to indicate the approach direction, a glide path (GP) that indicates the appropriate approach glide slope, and three of marker beacons (MB) that indicates the distance to the runway landing edge. In this study, we predicted the received signal strength by altitude and distance for LOC signals transmitted from the ground and analyzed the difference with the signal strength measured in the actual environment. Our objective is to develop signal strength prediction technology and apply it to the real environment.

Wave propagation of bi-directional porous FG beams using Touratier's higher-order shear deformation beam theory

  • Slimane Debbaghi;Mouloud Dahmane;Mourad Benadouda;Hassen Ait Atmane;Nourddine Bendenia;Lazreg Hadji
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.43-60
    • /
    • 2024
  • This work presents an analytical approach to investigate wave propagation in bi-directional functionally graded cantilever porous beam. The formulations are based on Touratier's higher-order shear deformation beam theory. The physical properties of the porous functionally graded material beam are graded through the width and thickness using a power law distribution. Two porosities models approximating the even and uneven porosity distributions are considered. The governing equations of the wave propagation in the porous functionally graded beam are derived by employing the Hamilton's principle. Closed-form solutions for various parameters and porosity types are obtained, and the numerical results are compared with those available in the literature.The numerical results show the power law index, number of wave, geometrical parameters and porosity distribution models affect the dynamic of the FG beam significantly.

On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.487-497
    • /
    • 2019
  • Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.

Wave Propagation in the Strip Plate with Longitudinal Stiffeners

  • Kim, H.;Ryue, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.102-107
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for many engineering applications. In this study, vibration characteristics of strip plates which have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element approach is used in this study which is known as an effect tool for waveguide structures. WFE method requires only cross-sectional FE model and uses theoretical harmonic solutions for the wave propagation along the longitudinal direction. First of all for a simple strip plate, WFE results are compared with theoretical ones such as the dispersion diagrams, point mobilities, etc. to validate the numerical model. Then in the numerical analysis, the several different types of longitudinal stiffeners are included to the plate model to investigate the effects of the stiffeners in terms of the dispersion curves and mobilities.

  • PDF

Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution (포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • An analytical closed-form solution for wave propagation velocity and damping in saturated porous media is presented in this paper The fully coupled field model with compressible solid Brains and pore water were used to derive this solution. An engineering approach for the analysis of fully saturated porous media was adopted and closed-form solutions for one dimensional wave propagation in a homogeneous domain were derived. The solution is highly versatile in that it considers compression of the solid grains, compression of the pore water, deformation of the porous skeleton, and spatial damping and can be used to compute wavespeeds of first and second kind and damping coefficients in various geologic materials. This solution provides a means of analyzing the influence of material property variations on wavespeed and attenuation. In Part 2 of this work the theoretical solution is incorporated into the numerical code and the code is used in a parametric study on wave propagation velocity and damping.

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF