• Title/Summary/Keyword: wave dispersion analysis

Search Result 192, Processing Time 0.022 seconds

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

Study of Continuous Monitoring for Underground and Geotechnical Structures using Accelerometers (가속도계를 활용한 지하 및 지반구조물 상시 계측 방안에 관한 연구)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.19-27
    • /
    • 2024
  • Geotechnical structures such as dams, tunnels, and slopes require regular inspection and monitoring to ensure stability. Domestically, drones and accelerometers have become common tools for inspecting and monitoring various structures. However, drones have difficulty identifying internal changes in structures and the subsurface, and accelerometers generally serve for seismic design or strain measurement purposes. Therefore, this paper proposes to utilize accelerometers to monitor the internal information of the ground on a real-time or periodic basis. The proposed method utilizes a part of the analysis technique from the SASW test to monitor the stability and state changes of geotechnical structures. Cases where SASW was used to evaluate the safety of geotechnical structures, such as slopes, dams, and tunnels, were reviewed to verify the suitability of the technology. To make the proposed method more practical, the study considered using only the first-step analysis to derive the dispersion curve rather than the second-step analysis to determine the shear wave velocity profile, which requires complex analysis. The proposed technique is expected to enable the continuous monitoring and inspection of geotechnical structures by utilizing accelerometers.

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF

Frequency Characteristics of a Membrane Duct (박막형 소음기의 주파수 특성)

  • 최성훈;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.420-425
    • /
    • 2001
  • Theoretical analysis of noise reduction by a membrane-duct system is presented. When acorn waves propagate in the membrane-duct, the membrane is also excited and its motion is coup with interior medium. It has been shown that propagating waves with supersonic wave speed exist beyond a certain critical frequency that is determined from the mass ratio of the me and the fluid. Also found are subsonic waves which couple strongly wi th the membrane a provide a powerful mechanism of energy dissipation. Existence of an exterior medium alter dispersion characteristics. It provides additional mass loading and reduces the subsort speed further. The effect of mean flow speed on dispersion characteristics is also consider results show that the membrane-duct system can be applied to diminish and absorb 1 frequency noise in duct instead of passive muffler, such as a simple expansion chamber absorption material.

  • PDF

Analysis of the Wave Propagation Characteristic for Pulse Signal on Tapered Microstrip Line in Time Domain (테이퍼형 마이크로스트립 전송선로에서 펄스 신호의 시간 영역 전송특성 해석)

  • Kim Girae;Choi Young-Kvu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.40-44
    • /
    • 2006
  • In this paper, the distortion characteristics of an electrical pulse which has a rise/fall time due to the dispersion and the reflection, on nonuniform tapered microstrip lines has investigated in time domain. The transmission characteristics on uniform microstrip lines in time domain had represented already, but the results for the nonuniform tapered microstrip lines not represented yet. We investigated the transmission characteristics for pulse signal on the nonuniform tapered microstrip lines, and the result applied to design of wide band impedance matching circuit in design of MMIC. The voltage and current transfer functions are shown for the tapered line. The dispersion and distortion obtained by using these transfer functions are represented for the nonideal square pulse.

An improved cross-correlation method based on wavelet transform and energy feature extraction for pipeline leak detection

  • Li, Suzhen;Wang, Xinxin;Zhao, Ming
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.213-222
    • /
    • 2015
  • Early detection and precise location of leakage is of great importance for life-cycle maintenance and management of municipal pipeline system. In the past few years, acoustic emission (AE) techniques have demonstrated to be an excellent tool for on-line leakage detection. Regarding the multi-mode and frequency dispersion characteristics of AE signals propagating along a pipeline, the direct cross-correlation technique that assumes the constant AE propagation velocity does not perform well in practice for acoustic leak location. This paper presents an improved cross-correlation method based on wavelet transform, with due consideration of the frequency dispersion characteristics of AE wave and the contribution of different mode. Laboratory experiments conducted to simulate pipeline gas leakage and investigate the frequency spectrum signatures of AE leak signals. By comparing with the other methods for leak location identification, the feasibility and superiority of the proposed method are verified.

Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory

  • Ayache, Belqassim;Bennai, Riadh;Fahsi, Bouazza;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • A free vibration analysis and wave propagation of functionally graded porous beams has been presented in this work using a high order hyperbolic shear deformation theory. Unlike other conventional shear deformation theories, a new displacement field that introduces indeterminate integral variables has been used to minimize the number of unknowns. The constituent materials of the beam are assumed gradually variable along the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The variation of the pores in the direction of the thickness influences the mechanical properties. It is therefore necessary to predict the effect of porosity on vibratory behavior and wave velocity of FG beams in this study. A new function of the porosity factor has been developed. Hamilton's principle is used for the development of wave propagation equations in the functionally graded beam. The analytical dispersion relationship of the FG beam is obtained by solving an eigenvalue problem. Illustrative numerical examples are given to show the effects of volume fraction distributions, beam height, wave number, and porosity on free vibration and wave propagation in a functionally graded beam.

Analytical Studies for SASW Measurements Underwater

  • Lee, Byung-Sik
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-62
    • /
    • 1997
  • Analytical studies were conducted to develop the Spectral-Analysis-of-Surface-Waves (SASW) method for underwater use. For the precise estimation of the in-situ soil stiffness profile from SASW measurements, it is essential to determine economical and reasonable theoretical dispersion curves reflecting various experimental conditions. In this paper, therefore, analytical methods are mainly discussed, which were developed to determine theoretical dispersion curves of surface waves propagated along the soil-water interface. Application of the analytical methods is then illustrated by an example involving estimation of a stiffness profile through a forward modeling process of SASW measurements. Applicabilities of the SASW method as well as the developed analytical methods are evaluated, respectively, from the example.

  • PDF

Frequency conversion using anomalous dispersion of organic material (유기재료의 이상분산을 이용한 파장변환)

  • Kim, Eung-Soo;Kim, Min-Sung;Kang, Shin-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • Second harmonic generation(SHG) by guided phase matching is observed in waveguide structure using the anomalous dispersion of a poled polymer. The second harmonic TM$_{0}$ guided mode could be generated from the fundamental TM$_{0}$ guided mode and then the second harmonic power was higher than any other phase matchable mode because the overlap integral between the fundamental and the second harmonic wave was the largest in the theoretical analysis. Near UV SHG(370 nm) was obtained from the fundamental wavelength of Ti-sapphire laser(740 nm).