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Abstract

Analytical studies were conducted to develop the Spectral-Analysis-of Surface-Waves
{(SASW) method for underwater use. For the precise estimation of the insitu soil stiffness
profile from SASW measurements, it is essential to determine economical and reasonable
theoretical dispersion curves reflecting various experimental conditions. In this paper,
therefore, analytical methods are mainly discussed, which were developed to determine
theoretical dispersion curves of surface waves propagated along the soil-water interface.
Application of the analytical methods is then illustrated by an example involving esti-
mation of a stiffness profile through a forward modeling process of SASW measurements.

Applicabilities of the SASW method as well as the developed analytical methods are
evaluated, respectively, from the example.
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ness

1. Introduction

A seismic technique called the Spectral-Analysis-of-Surface-Waves(SASW) method has
been developed to profile stiffness properties near the surface of layered soil media
{Nazarian and Stokoe, 1986). In the SASW method, seismic surface waves propagating

along the ground surface are measured by two vertically-oriented receivers positioned along
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a line at different distances from the source and analyzed by using a spectral analysis tech-
nique, An experimental dispersion curve for surface waves, characterized by the variation
of the phase velocity with frequency, is determined from the phase difference between the
gignals at the two receivers. A gectechnical site is characterized by a profile of shear wave
velocity with depth that provides a theoretical disperston curve consistent with the exper-
imental one.

The SASW method has been successfully applied to explore various geotechnical sites
(Stokoe et al., 1989). Recently, experimental studies have been performed to extend the
SASW method to layered soil systems overlaid by water(Luke et al, 1993). Analytical
studies have also been performed to support the Interpretation of experimental data
obtained from the SASW method underwater{Wright et al,, 1994: Lee, 1996).

In the analytical studies, it is one of important objectives to develop analytical methods
to determine economical and reasonable theoretical dispersion curves of surface waves. In
this paper, therefore, development of these analytical methods is mainly discussed. An
example is also shown, in which theoretical dispersion curves determined from the analyti-
cal methods were applied to a forward modeling of SASW measurements underwater.
Applicabilities of the SASW method as well as the developed analytical methods for under-
water use are examined on the basis of the results obtained from the example.

2. Analytical Methods for Determining Dispersion Curves

To determine theoretical dispersion curves for layered soil deposits overlaid by water,
Lee(1996) suggested two analytical methods:  “the normal mode, so-called the 2
dimensional(2D} solution”; and “the complete solution, socalied the 3 dimensional{3D)
solution”. In both analytical methods, dispersion curves were determined by solving a wave

propagation problem for homogeneous, isotropic, and horizentally layered elastic media.

2.1 The Dynamic Stiffness Matrix Approach

To obtain general solutions for a wave propagation problem, the stiffness matrix ap-
proach established by Kausel and Roesset(1981)} was used. In this approach, the forces at
the interfaces between layers are related directly to displacements at the same locations by
a dynamic stiffness matrix., Thus, displacements developed at any of the interfaces of
either an isclated soil or water layer to an external load or seismic excitation can he di-
rectly determined by using this approach. The stiffness matrices for the isolated soil and
water layers can be found in Lee(1996).

To determine dynamic response for an entire layered system as shown in Fig.l, a global
stiffness matrix, (K], needs to be assembled as seen in Fig. 2 for the complete system con-
sidering the layer stiffness at each “node” (interface) of the system. The global load
vectors and displacements in Fig. 2 correspond to external forces and dynamic responses at
the interfaces, respectively, and are referred to as the state vectors. The state vectors for a
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layered system are shown in Fig. 1.

2.2 An Analytical method: the 2 Dimensional Solution

According to the vibration theory, dispersion curves can be determined on the basis of

the normal modes(roots) of vibration of a layered system. Normal modes are obtained
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Fig.1 Displacements, stresses and external load vectors at the interfaces of a layered

soil system overlaid by water on a x—z plane of a Cartesian coordinate system.
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Fig.z Interrelationship between the load and displacement state vectors through the global

stiffness matrix for a system composed of layers of soil overlying a soil halfspace and

overlaid by a water layer.
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from the characteristic equation formulated with the stiffness matrix approach.
The normal modes of the system can be obtained from the equation given in Fig. 2.
providing no external loads exist. In this case, the equation is expressed as
[K]{U}=0 (1)
where [K] is the global stiffness matrix of the system, and {U} is the wvector for
displacements at the layer interfaces in the system. To obtain the non-trivial solution for
displacements from Eq. 1, the determinant of the stiffness matrix should be zero:
[K{=0 (2)
This equation is called the “characteristic” equation (“period” equation, “secular”
equation, or “dispersion” function). The roots of the characteristic equation are the normal
modes and are called here the 2-D solution. For practical convenience in this study, the
roots of the characteristic equation are expressed in terms of phase velocities rather than
wave numbers corresponding to prescribed wavelengths or frequencies. The interrelations of
phase velocities with wavelengths or frequencies represent the dispersion curve,

2.3 An Analytical method: the 3 Dimensional Solution

As a more sophisticated and a more realistic solution than the 2D solution, the 3D sol-
ution is also developed. The 3-D solution is the harmonic displacements due to dynamic
loads in the frequency-spatial domain in a cylindrical coordinate system from which disper-
sion curves can be generated. In a cylindrical coordinate system shown in Fig. 3, the har-
monic displacements in the spatial domain are expressed by “inverse Hankel transform
integrals” of the harmonic displacements in the wave number domain, and can be solved by
evaluating the integrals. This technique is called the “integral transform technique”(Ewing
et al, 1957)

For a specified loading condition, a particular solution for the displacement in the fre-
quency-spatial domain can be obtained by using the integral transform technique. For a
present problem, the loading cendition considered consists of a harmonic vertical disk load
applied in the frequency-spatial domain at the soil-water interface. This assumes that a
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Fig.3 Illustration of the decomposition of the displacements and stresses in the
circumferential and radial directions in a cylindrical coordinate system.
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uniform harmonic vertical load is applied over a circular area with the radius of the disk.
This representation of the loading is frequently used to represent the source for seismic
tests.

A particular solution for the vertical displacement corresponding to the specified load

was obtained as
ulr, wy=qR| ulk, w) J.(kR)J(kr)dk (3)

where £ is wave number; ¢ is the amplitude of the disk load; r is the distance from the
center of the disk load; R is the radius of the disk: wfr, w) and u(k, w) are the vertical
displacements in spatial and wave number domain, respectively, and the bar denotes the
frequency-wave number domain; and J,(kr) and J,(kr) are the Bessel functions of the first
kind, and order zerc and one, respectively.

The displacements expressed by Eq. 3 can be calculated by: (1) assembling the stiffness
matrix for the coupled soil-water system: (2) solving the displacements corresponding to
the unit harmonic vertical load for each of the wave numbers by using the relationship be-
tween displacements and loads interrelated with the stiffness matrix ; (3) evaluating the
integrals in Eq. 3 with the displacements obtained in the step 3; (4) repeating the pro-
cedure from step 1 through step 3 for various frequencies.

The complex vertical displacements calculated from Eq. 3 provide phase information at
various locations in the spatial demain for the calculation of phase velocities of the surface
wave. The phase velocity of the surface wave for each frequency is calculated from the
phase difference between the displacements at two distances from the source. Dispersion
curves are then determined from the relationship between the phase velocities and the
frequencies,

An analytical difficulty remains in determining the displacements by using Eq. 3. Ana-
Iytical evaluation of these integrals is limited when there is a large number of layers, and
closed-form evaluation of the integrals can only be obtained for very simple cases. Thus,
the integrals need to be evaluated numerically.

Among the various numerical methods to evaluate the Hankel transform integrals given
by Eq. 3, a numerical integration method called the “fast field” technique(Schmidt, 1985)
was found to be useful for dealing with underwater problems and was chosen for this
study. In the fast field technique, the Bessel functions in the Hankel transform integrals
are gseparated into incoming and outgoing parts by expressing them in terms of Hankel
functions. The Hankel functions are then replaced by the asymptotic expressions for large
arguments. The Hankel transform integrals then become similar to the Fourier transform

and are evaluated easily by means of the fast Fourier transform technique.

3. Application of the Developed Analytical Methods

The 2D and 3D solutions presented in this paper were applied to estimate soil stiffness
profiles from experimental dispersion curves. To estimate an in situ soil stiffness profile
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theoretical dispersion curves are computed by using assumed stiffness profiles, and
compared to experimental dispersion curves. The assumed stiffness profile is adjusted re-
peatedly until the theoretical dispersion curve matches the experimental dispersion curve
within acceptable limits.

3.1 Experimental Dispersion Curve

The case considered here consists of soft material at the surface that increases in stiff-
ness with depth. The test site is located in the Gulf of Mexico. The seafloor of the test site
is essentially flat, and the water is about 27m deep. Luke(1994) determined the experimen-
tal dispersion curves for the test site as shown in Fig. 4. Surface wave velocities for wave-
length ranging from approximately 0.6m to 100 m were determined, and, thus, soil profiles
approximately as deep as 30 to 50m could be investigated from this result. Further details
of the experimental set up, the testing technique, and equipment can be obtained from
Luke (1994).

Wavelength, m

Fig4 Composite dispersion curves determined from the cross power spectrum cobtained by applying
the SASW method to the time records of every pair of geophones{After Luke, 1594).

3.7 Estimation of the in situ Soil Stiffness Profile

Theoretical dispersion curves were calculated from the 2-D and the 3-D solutions and
compared to the experimental dispersion curves. The experimental dispersion curve for only
one location at the 68m offset from the source was selected because the dispersion curves
for all the locations had a similar trend of dispersion.

The final soil stiffness profile determined after iterative forward medeling is shown in
Fig. 5. The stiffness profile for depths to 30m from the soil-water interface was assumed.
The soil below the depth of 30m was assumed to behave as a halfspace. The water depth of
27m was assumed on the basis of the actual water depth. To simulate the experimental set
up in the 3-D solution, the receiver spacing was assumed to be the same as the one used in
the experiments by using “the alternative method” described by Lee(1996). The receiver
spacing was 5m and the locations of the receivers were 68 and 73m from the source.
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Fig.sb An estimated scil stiffness profile with depth at the 68m offset from the source
for the test site in the Gulf of Mexico{Water depth=27m).

The theoretical dispersion curves computed from both the 2-D and 3-D solutions are
compared to the experimental dispersion curve in Fig. 6. The theoretical dispersion curves
from both the solutions agree well with the experimental dispersion curve over the wave-
length range shown in this figure. Thus, the contribution of higher modes appears to be
negligible for this wavelength range although the soil stiffness abruptly increases in a large
amount at a depth of 1lm (from 215 to 2500 m/sec) as seen in Fig. 5.

g

- T

+ Experiment
o 3D Solution
— 2D Solution

:

o
=
=

2

Surface Wave Velocity, m/ sec

[=)

2 3 4 5678910 20 30 40
Wavelength, m

Fig6 Comparison of experimental and thecretical dispersion curves at the offset of
68m for the Gulf of Mexico data.

4. Comments in Application of the Analytical Methods

At the outset of this study, the 2D selution was preferred to the 31} solution for several
reasons: (1) the dispersion curves determined by the 2D solution (the first of the normal
modes) were expected to be acceptable in many underwater cases because experience
acquired from many on land cases showed that surface wave propagation was dominated by
the first mode: (2) the effort to obtain a 2D solution was less than for a 3D solution: and
{(3) the basic theory of the 2D solution was easily understandable.
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In some cases, however, the dispersion curves determined from the 2D and 3D solutions
were often significantly different in the range of the frequencies of interest. The major
cause of the difference was revealed to be the contributions of higher modes. These cases
are often encountered where stiffness decrease in some depth interval or stiffness contrast
between layers is significant. For these cases, it was believed that the contributions of
higher modes to the dispersion curves were thought to be significant. When the
contributions of higher modes are significant, the dispersion curves determined from the
2D solution are not realistic for a significant range of frequencies because the 2D solution
does not identify the higher mode contributions. Realistic dispersion curves can only be de-
termined by the 3D solution. In addition, for such cases, it was shown that the dispersion
curves vary with the receiver locations. Therefore, it is necessary to consider the receiver
spacing for the 3D solution for the determination of dispersion curves matching those from
experiments.

Accordingly, it can be suggested that reliable theoretical dispersion curves can be deter-
mined by both the 2D and 3D solutions if the contributions of higher modes are negligible.
However, it is almost impossible to suggest a certain criterion determining for all cases
whether the contributions of higher modes are negligible or significant. Thus, except for
cases where the stiffness increases only gradually with depth, it is recommended that dis-
persion curves determined from the ZD solution be verified by using the 3D solution. If
the contributions of higher modes are very significant, the 3D solution should be used and

consideration should be given to the receiver spacing.

5. Conclusions

Twe analytical methods to determine theoretical dispersion curves were developed in this
study. The 2D solution characterizes the disturbance assuming plane wave propagations in
Cartesian coordinates. The 3D solution is expressed in terms of motions by solving propa-
gation of waves with a curved wave front in cylindrical coordinates resulting from a verti-
cal disk load on the soil-water interface. Though determining dispersion curves from the
3D solution is a more sophisticated and more realistic approach, this methed is more
computationally intensive. Thus, the 2D solution is preferred in many cases where it
provides an adequate solution, i.e., where contributions of higher modes are negligible.

Theoretical dispersion curves from the 2-D and 3-D solutions were compared with the ex-
perimental dispersion curve for the site where the stiffness increased with depth{(Gulf of
Mexico). For this case, theoretical dispersion curves from both the 2-I3 and 3-D solutions
agreed well with the experimental dispersion curves. Thus, the 2-D solution was found to
be adequate for this example. Accordingly, it could be concluded that contribution of higher
modes was apparently negligible for the wavelength range where the dispersion curves
reflected the soil stiffness increasing gradually with depth.

60 Voll3, No.3, June 1997



Acknowledgment

The work reported in this paper was funded by the Offshore Technology Research Center
created by the National Science Foundation at The University of Texas at Austin and
Texas A&M University. The experimental data was created by Professor Barbara A. Luke

of University of Nevada, Las Vegas. The author gratefully acknowledges their support.

(1]

6.

References

. BEwing, M. W., W. Jardetzky, and F. Press (1957}, “Elastic Waves in Layered Media,” McGraw

Hill, New York.

. Kausel, E. and J. M. Roesset (1981), “Stiffness Matrices for Layered Soils,” Bulletin of Seismologi-

cal Society of America, Vol. 71, Ne. 6, pp. 1743-1761.

. Lee, Byungsik (1996), “Analytical Studies of Surface Wave Propagation along the Seafloor for

Application to Spectral-Analysis-of-Surface-Waves (SASW) Testing,” Ph.ID. Dissertation, The

University of Texas at Austin.

. Luke, B. A, K. H. Stokoe II, S. G. Wright, J. M. Roesset, and B. Lee (1993), “Experimental In-

vestigation of Surface Wave Velocities in Simulated Ocean Bottoms,” Proceedings, Offshore Tech-
nolegy Conference, Houston, Texas.

. Luke, B. A. (1994), "In Situ Measurement of Stiffness Profiles in the Seafloor Using the Spec-

tral-Analysis-of-Surface-Waves (SASW) Method”, Ph.D). Dissertation, The University of Texas at
Austin.

. Nazarian, S and K. H. Stokoe, I, “Use of Surface Waves in Pavement Evaluation,” Transpor-

tation Research Record, 1070, 1986, pp. 132-144.
Schmidt, H. and J. Glattetre (1983), "A Fast Field Model for Three-Dimensional Wave Propa-
gation in Stratified Environments based on the Global Matrix Method,” Journal of Acoustic So-
clety America, Vol. 78, Dec. 1985, pp. 2105-2114.

. Btokoe, K. H,, I, G. J . Rix, and 8, Nazarian {1989), “In situ Seismnic Testing with Surface

Waves,” Soil Mechanics and Foundation Engineering, Rio de Janciro, Brazil, Vol. 1, Balkema,
Rotterdam, pp. 331-334.

. Wright, 8. G., K. H. Stokoe, Il and J. M. Roesset (19894), “SASW Measurements at Sites Over-

laid by Water,” Dynamic Geotechnical Testing [I, STP 1213, American Scciety for Testing and
Materials, Philadelphia.

(received on Apr, 21.1997)

Jour. of KGS 61



