• Title/Summary/Keyword: watershed area

Search Result 1,196, Processing Time 0.027 seconds

Mapping of Functionally Reduced Potential Area for Improving Utilization of Agricultural Reservoir in Terms of Environmental Planning (환경생태계획 측면에서 농업용저수지 활용성 제고를 위한 기능저하 잠재지역 맵핑 연구)

  • Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.1027-1032
    • /
    • 2019
  • This study aimed to analyze the prioritized area for the functional change of agricultural reservoir according to the rapid urbanization and social changes through the mapping method. Changwon-si, Gimhae-si, and Jinju-si in Gyeongnam province were selected as the study area, considering the results of land-use and cluster analysis. As the planning unit of management area, watershed was used and land coverage map from 1975 to 2015 were analyzed for changes of land use. The reduction ratio (%) of farmland was calculated for identifying the changes in 2013 compared to 1975. As a result, the reduction ratio was 11.9% for Changwon-si, 12.2% for Gimhae-si and 9.3% for Jinju-si, and the number of watershed having functionally reduced potential-area was relatively high in the proportion to the city size.

The Characteristics of the Vegetation of 'Amgok' Wetland, Gyeongju National Park, Korea (경주국립공원 내 암곡습지 유역권 식생분포 특성 연구)

  • Kim, Ji-Suk;Choi, Song-Hyun;Hong, Suk-Hwan;Kang, Hyun-Mi;Bae, Jung-Nam
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.381-395
    • /
    • 2013
  • In this study, we surveyed 6 times for the actual vegetation type and flora of Amgok wetland (Intermediate moor area, Alnus japonica community area) and it's watershed area in Tohamsan district, Gyeongju National Park from Apr. to Nov. in 2011. As a result of the actual vegetation type, most vegetation of watershed area was disturbed by human activity except wetland area. Even though the wetland is relatively broad compared with it's watershed, the wetland: watershed is around 1:10. The flora was surveyed 65 family, 184 species, 1 subspecies, 39 variety, 8 forma and totally 233 taxonomic group in the watershed. The wetland type was looked intermediate moor. Naturalized plants was surveyed 2taxonomic in the wetland area and total was17 taxonomic. This area has relatively broad wetland and soundly conserved. But several Salix koreensis and Acer ginnala are growing so needed the interest and monitoring.

Evaluation of Organic Matter Flow in Rural Watersheds (농촌유역에서의 유기물 흐름의 평가-충북 청원군 가덕면 유역을 대상으로)

  • 오광영;김진수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.676-681
    • /
    • 1999
  • The organic matter flow in rural watershed in Chongwon-gun , Chungbuk, was evaluated, The study watershed is about 67$\textrm{km}^2$ in area and its population was 7,000 in 1996. The amount of inflow in the study area exceeds the amount of outflow by 534kg/ha , and the livestock feed account for 90 percent of the amount of inflow. The loading of organic matter by livestock waste amounts to 51 percent of total loading to agricultural land and the enviornment. The increase in recycling of livestock waste is essential for the management of orgainc matter in the rural watershed.

  • PDF

Developing Suspended Sediment Delivery Ratio in the Lake Imha Watershed (임하호유역 유사유달공식 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Kim, Jae-Kwon;Kim, Taedong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.744-753
    • /
    • 2017
  • The sediment delivery ratio (SDR) is widely used to estimate sediment loads by multiplying soil loss through the Revised Universal Equation (RUSLE). In this study, the SDR equation was developed for the Lake Imha watershed using soil loss calculated by RUSLE and sediment loads by the calibrated Hydrological Simulation. Program Fortran (HSPF). The ratio of watershed relief and channel length ($R_f/L_{ch}$), the ratio of watershed relief and watershed length ($R_f/L_b$), curve number (CN), area (A), and channel slope ($SLP_{ch}$) demonstrated strong correlations with SDR. SDR equations were developed by a combination of subwatershed parameters by referring to the correlation analysis. The area based power functional SDR developed in this study showed significant errors at the point right after entering major tributaries, because SDR was unrealistically reduced when the watershed area increased significantly. The $SLP_{ch}$-based power functional SDR also showed extraordinary values when the channel slope was gradual. The SDR equation that showed the highest value of the coefficient of determination also presented unrealistic changes in the sediment loads within a relatively short river distance. The SDR equation $SDR=0.0003A^{0.198}R_f/L{_w}^{1.167}$ was recommended for application to the Lake Imha watershed. Using this equation, sediment loads at the outlet of the Lake Imha watershed were calculated, and the HSPF parameters related to sediment in the uncalibrated subwatersheds were determined by referring to the sediment loads calculated with the SDR equation.

Influences of Fish Farm on the Physicochemistry of Stream Water Quality in (Mt.) Paekun Area(II) (백운산 지역에서 계류수의 이화학적 성질에 미치는 양어장의 영향(II))

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Kim, Oue-Ryong;Ahn, Hyun-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • Quantifications of fish farm influences on stream water quality may provide basic informations on watershed management to reduce environmental impact due to fish farm development and to conserve stream water quality in forested watershed area. In this research stream water qualities around Mt. Paekun area were monitored seasonally and the following results were obtained. Due to the increase of pH in effluent water from the fish farm it was believed that alkalization of stream water can be accelerated by large scale development of fish farms in the forested watershed area. Negative effects on stream water quality were observed by indications of increase in electrical conductivity and temperature of effluent water from the fish farm. Decreases in physicochemical indices such as the amount of dissolved oxygen, percentage of dissolved oxygen, total amount of cation, total amount of anion and total amount of ion in effluent water from the fish farm were also negative aspects in downstream ecology. It is recommended that water purification system as well as eco-friendly fish farm design should be incorporated to large scale fish farm development plan in forested watershed area.

  • PDF

Influences of Fish Farm Development on the Physicochemistry of Stream Water Quality in (Mt.) Paekun Area (백운산 지역에서 계류수의 이화학적 성질에 미치는 양어장 개발의 영향)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.54-63
    • /
    • 1999
  • Quantifications of fish farm influences on stream water quality may provide basic informations on watershed management to reduce environmental impact due to fish farm development and to conserve stream water quality in forested watershed area. In this research stream water qualities around (Mt.) Paekun area were monitored by seasons and the following results were obtained. Due to the increase of pH in effluent water from the fish farm it was believed that alkalization of stream water can be accelerated by large scale development of fish farms in the forested watershed area. Negative effects on stream water quality was also observed by indications of increase in electrical conductivity and temperature of effluent water from the fish farm. Decreases of physicochemical indexes such as the amount of dissolved oxygen, percentage of dissolved oxygen and total amount of ion in effluent water from the fish farm were also negative aspects in downstream ecology. It is recommended that water purification system as well as eco-friendly fish farm design be incorporated to large scale fish farm development plan in forested watershed area.

  • PDF

Estimation of Annual Capacity of Small Hydro Power Using Agricultural Reservoirs (농업용저수지를 이용한 소수력의 연간발전량 추정)

  • Woo, Jae-Yeoul;Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate the effect of hydro power factors (e.g., irrigation area, watershed area, active storage, gross head) on annual generation capacity and operation ratio for agricultural reservoirs in Chungbuk Province with active storage of over 1 million $m^3$. The annual generation capacity and operation ratio were estimated using HOMWRS (Hydrological Operation Model for Water Resources System) from last 10-year daily hydrological data. The correlation coefficients between annual generation capacity and the hydro power factors except gross head were high (over 0.87), but the correlation coefficients between operational rate and the factors were low (below 0.28). The optimum multiple regression equations of the annual generation capacity were expressed as the functions of watershed area, active storage, and gross head. Also, the simple regression equation of annual generation capacity was expressed as a function of watershed area. The average relative root-mean-square-error (RRMSE) between observed and estimated values by the optimum multiple regression equations was smaller than that by the simple regression equation, suggesting that the former has more accuracy than the latter.

A Study on the Spatial Strength and Cluster Analysis at the Unit Watershed for the Management of Total Maximum Daily Loads (다변량통계분석을 이용한 수질오염총량관리 단위유역별 오염물질 배출특성 분석 - 한강수계를 중심으로 -)

  • Choi, Ok Youn;Kim, Ki Hoon;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.700-714
    • /
    • 2015
  • The characteristic of the water quality and pollutant discharge was analyzed at the units watershed of the total amount management in Han-river basin, and after classified in a similar area by multivariate statistical analysis, the main trend such as the water quality trend and pollutant discharge characteristic were analyzed. As a result of this study, the density of the pollutant at the unit watershed is not necessarily identified as discharge density, and the primary management watershed and targeted substances were analyzed depending on the operating status of the environmental infrastructure in watershed and the main pollution factor and discharge path per pollutants. As a result of cluster analysis, watersheds were classified into four groups according to discharge characteristics. It will be used when selecting target area of primary management that is appropriate to the characteristics of each river and establishing efficient water quality improvement plans.

A methodology to extract landuse properties in urban areas and its application using GIS (GIS를 이용한 도시유역 토지이용특성 추출과 활용방안)

  • Shin, Min-Chul;Jun, Hwan-Don;Park, Moo-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.207-210
    • /
    • 2007
  • The accurate estimation of the area of individual landuse in each subbasin is crutial. However, because of the complication in landuse of an urban watershed, it is almost impossible to estimate the area of individual landuse in each subbasin by manual ways. For this reason, in this study, a systematic methodology is suggested to estimate individual landuse area of each subbasin using GIS. To construct data for applying GIS, CAD data including sewer layout and landuse are collected and converted into the GIS data such as shape files. An urban watershed, then, is divided into subbasins with respect to sewer layout and landuse. For each subbasin, the area of individual landuse including road areas are estimated by applying several GeoProcessing functions. The proposed methodology is applied to the Goon-Ja watershed in Seoul to demonstrate its applicability and it is concluded that the proposed methodology can estimate individual landuse properties efficiently and accurately.

  • PDF

Watershed Delineation Algorithm Using Kruskal's Algorithm and Triangulated Irregular Network (크루스칼 알고리즘과 불규칙 삼각망을 이용한 유역 추출 알고리즘)

  • Park Mee-Jeong;Heo Hyun;Kim Tae-Gon;Suh Kyo;Lee Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.3-12
    • /
    • 2006
  • Watershed is the land area that contributes runoff to an outlet point. To delineate an watershed, watershed delineation using GIS that contains grid data structure is the most general method. Some researchers have studied to implement algorithms that revise the TIN topography since it is difficult to delineate watershed boundary more accurately. In this study kruskal's greedy algorithm and triangulated irregular network (TIN) were used to delineate a watershed. This method does not require a conversion from to DEM in grid and automatically obtain(generates) the oulet points. Delineation algorithm was tested in Geosan-gun, Chung-cheongbuk-do and get small watershed areas. Finally, kruskal's algorithm could operate more precisely with revision algorithm.