• Title/Summary/Keyword: water stress.

Search Result 3,230, Processing Time 0.031 seconds

A Study on the Prediction of Shear Strength and Determination of the Embarkation Time of Equipment in Dredged Clay Fills (준설점토지반의 전단강도 예측 및 장비투입시기 결정에 관한 연구)

  • Kim, Hong Taek;Kim, Seog Yol;Kang, In Kyu;Kim, Seung Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.47-56
    • /
    • 2001
  • In the present study, mainly to determine the embarkation time of equipment in dredged clay fills, an analytical approach is performed to predict a variation of the undrained shear strength in the outermost layer. In this approach, Gibson's non-dimensional linear constant defining the relationship between the void ratio and the effective stress is employed. Also in this approach, void ratios and settlements associated with the volume change due to the self-consolidation and the desiccation shrinkage are evaluated at various elapsed times based on the finite difference solution technique proposed by the authors(1999) and the developed computer program named as DSCON. Predicted results(water content ratio, unit weight and undrained shear strength) are compared with those of laboratory model tests conducted with soil samples obtained from the Koheung site. Based on the predicted undrained shear strengths, possible embarkation time of a equipment is also evaluated. In addition, further analyses are made to indirectly verify the efficiency of the analytical approach proposed in the present study using the PSDDF computer program which can consider the drainage efficiency.

  • PDF

Evaluation of Constitutive Relationships and Consolidation Coefficients for Prediction of Consolidation Characteristics of Dredged and Reclaimed Ground (준설매립지반의 압밀거동 예측을 위한 구성관계식 산정 및 압밀정수 평가)

  • Jun, Sanghyun;Yoo, Namjae;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.31-41
    • /
    • 2008
  • Consolidation characteristics of reclamated ground with dredged soil and methods of evaluating them are investigated in this paper. For a dredged and reclamated ground with a very high water content, self-weight consolidation being progressed, its consolidation characteristics are difficult to find since it is almost impossible to have a undisturbed sample. In order to overcome such a problem, methods of laboratory tests with disturbed sample were studied to obtain consolidation parameters required to analyze consolidation settlement in practices, using the conventional infinitesimal consolidation theory, were evaluated by carrying out various laboratory tests with disturbed soils such as oedometer test, constant rate of deformation test, Rowe-cell tests with ring diameters of 60 mm, 100 mm and 150 mm and the centrifuge model tests with 40 g-levels. Constitutive relations of void ratio - effective vertical stress - permeability were evaluated by using the inverse technique implemented with the finite strain consolidation theory and results of centrifuge model tests. Design soil parameters related to consolidation such as compression index, swelling index, coefficient of volume change and vertical and horizontal consolidation coefficients were proposed properly by analyzing the various test results comprehensively.

  • PDF

An Experimental Study of Strength Evaluation in Frozen Soils according to Direct Shear Box Systems (직접전단상자 시스템에 따른 동결토의 강도 평가에 관한 실험적 연구)

  • Kim, Sang Yeob;Kim, YoungSeok;Lee, Jangguen;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.5-14
    • /
    • 2017
  • Experimental study on strength characteristics of frozen soils is necessary for the safety evaluation of design and construction in cold region. The objective of this study is to evaluate the direct shear strength of frozen soils obtained from traditional system (Type-1), system with roller on the upper shear box (Type-2), and system with fixed upper shear box separated from bottom shear box (Type-3). Specimens mixed with sand, silt, and water are frozen to $-5^{\circ}C$, and then direct shear tests are conducted under the normal stress of 5, 10, 25, and 50 kPa. Experimental results show that the upper shear box of Type-1 touches the bottom shear box due to the rotation of the upper shear box. The shear strength obtained from Type-2 is overestimated because the preventing rotation force is added to shear force. Type-3 may acquire the only strength of the specimen, and shear strain at peak shear strength is similar to that at the beginning of vertical displacement occurrence. In addition, internal friction angle and cohesion at both peak and residual stresses in Type-3 are smaller than those of Type-2. This study shows that high strength specimens including frozen soils can be effectively evaluated using improved shear box system such as Type-3.

The compressive fracture strength of ceromer crown by the difference of occlusal thickness (Ceromer crown의 교합면 두께에 따른 압축 파절 강도의 비교)

  • Kim, Jee-Yeon;Park, Ha-Ok;Yang, Hong-So
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • This study investigated the compressive fracture strength of Targis ceromer crown by the difference of occlusal thickness on a maxillary first premolar. Control group was a castable IPS-Empress all-ceramic crown with occlusal thickness of 1.5 mm constructed by layered technique. Experimental groups were Targis crowns having different occlusal thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, respectively. The classification of Targis group is T10, T15, T20, T25 and T15N (for no-thermocycling and occlusal thickness of 1.5mm). Ten samples were tested per each group. Except occlusal thickness, all dimension of metal die is same with axial inclination of $10^{\circ}$and marginal width 0.8mm chamfer. All crowns were cemented with Panavia F and thermocycled 1,000 times between $5^{\circ}$ and $55^{\circ}$ water bath with 10 sec dwelling time and 10 sec resting time. The compressive fracture strength was measured by universal testing machine. The results were as follows : 1. Fracture strength was increased as the occlusal thickness increased : compressive fracture strength of Group T10, T15, T20, T25 was $66.65{\pm}4.88kgf$, $75.04{\pm}3.01kgf$, $87.07{\pm}7.06kgf$ and $105.03{\pm}10.56kgf$, respectively. 2. When comparing material, Targis crown had higher fracture strength than IPS-Empress crown : the mean compressive strength of group T15 was $75.04{\pm}3.01kgf$ and the value of group Control was $37.66{\pm}4.28kgf$. 3. Fracture strength was decreased by thermocycling : the compressive fracture strength of T15 was $75.04{\pm}3.01kgf$, which is lower than $90.69{\pm}6.88kgf$ of group T15N. 4. The fracture line of crowns began at the loading point and extended along long axis of tooth. IPS-Empress showed adhesive failure pattern whereas Targis had adhesive and cohesive failure. In the SEM view, stress was distributed radially from loading point and the crack line was more prominent on Targis crown.

The effect of a titanium socket with a zirconia abutment on screw loosening after thermocycling in an internally connected implant: a preliminary study (내부연결 임플란트용 타이타늄 소켓을 이용한 지르코니아 지대주에서 열순환이 나사풀림에 미치는 영향: 예비연구)

  • Kyung, Kyu-Young;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Purpose: The aim of this study was to investigate the effects of a titanium component for the zirconia abutment in the internal connection implant system on screw loosening under thermocycling conditions. Materials and Methods: Internal connection titanium abutments and external connection zirconia abutments with titanium sockets were connected respectively to screw-shaped internal connection type titanium implants with 30 Ncm tightening. These implant-screw-abutment assemblies were divided into two groups of five specimens each; titanium abutments as control and zirconia abutments with titanium sockets as experimental group. The specimens were subjected to 2,000 thermocycles in water baths at $5^{\circ}C$ and $55^{\circ}C$, with 60 seconds of immersion at each temperature. The removal torque values (RTVs) of the abutment screws of the specimen were measured before and after thermocycling. RTVs pre- and post-thermocycling were investigated in statistics. Results: There was not screw loosening identified by tactile and visual inspection in any of the specimens during or after thermocycling. The mean RTV difference for the control group and the experimental group were $-1.34{\pm}2.53Ncm$ and $-1.26{\pm}2.06Ncm$, respectively. Statistical analysis using an independent t-test revealed that no significant differences were found in the mean RTV difference of the groups (P > 0.05). Conclusion: Within the limitations of this in vitro study, the titanium socket for the zirconia abutment did not show a significant effect on screw loosening under thermal stress compared to the titanium abutment in the internal connection implant.

Antioxidant and Antipruritic Activities of Ethyl Acetate Fraction from Diospyros lotus Leaves (고욤(Diospyros lotus)잎 유래 Ethyl Acetate 분획물의 항산화 및 항가려움 활성)

  • Jeon, In Hwa;Kang, Hyun Ju;Kim, Sang Jun;Jeong, Seung Il;Lee, Hyun-Seo;Jang, Seon Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1635-1641
    • /
    • 2014
  • Diospyros lotus has been cultivated for its edible fruits, which are considered to have medicinal importance. The aim of this study was to evaluate the antioxidant and antipruritic activities of water-soluble, methanol extract, and ethyl acetate (EA) fractions from D. lotus leaves. The EA fraction showed the lowest $IC_{50}$ vale (DPPH: $5.3{\mu}g/mL$, ABTS: $53.8{\mu}g/mL$). Therefore, we further investigated anti-inflammatory and antipruritic effects of the EA fraction. TNF-${\alpha}$ production increased by PMA plus A23187 treatment was significantly inhibited by the EA fraction in a dose-dependent manner. The EA fraction also inhibited histamine release from rat peritoneal mast cells stimulated by compound 48/80, which promotes histamine release. Furthermore, EA fraction had inhibitory effects on scratching behavior induced by compound 48/80 in Balb/c mice. These results suggest that the EA fraction from D. lotus leaves has potential as ameliorative agent against oxidative stress and pruritus-related disease.

Analysis of Nutrition and Antioxidants of Yak-Kong Chungkukjang Powder Added Black Foods (블랙푸드가 첨가된 약콩청국장분말의 영양소 및 생리활성물질 분석)

  • Kong, Hyun-Joo;Park, Heyun-Sook;Kim, Tae-Hoon;Shin, Seung-Ryeul;Hong, Ju-Yeon;Yang, Kyung-Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1727-1735
    • /
    • 2013
  • This study is carried out to investigate the analysis of nutrition and antioxidants of soybean Chungkukjang powder (SCP), Yak-Kong Chungkukjang powder (YCP) and Yak-Kong Chungkukjang powder added black foods (YCBP) for the management of Alzheimer's disease. The water content of YCBP was higher than that of SCP and YCP. The soluble and crude protein contents of YCP were the highest among three Chungkukjang powders. In SCP, YCP and YCBP, the ratios of unsaturated and saturated fatty acids were 5.17, 5.76, and 5.78, respectively. The mineral content of SCP was higher than that of YCP and YCBP. Antioxidants analysis showed that the content of diadzein was the highest in YCP and genistein, and anthocyanin contents were higher than the others in YCBP. In conclusion, YCP and YCBP had higher contents than SCP in soluble and crude proteins, and unsaturated fatty acids, which are needed for composition and function of the brain tissue. Also, it was found that the contents of diadzein, genistein and anthocyanin with outstanding antioxidative ability were high. Thus, this study suggests that Chungkukjang powder, which is made with Yak-Kong, black sesame, black rice and sea tangle, can be utilized for in vivo experiment for the control of oxidative stress, reported as cause and therapy for Alzheimer's Disease.

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Permeability and Strength of Cements Exposed to Supercritical CO2 for Varying Periods (초임계 CO2 - 시멘트 반응 전후의 투수율 및 강도 변화)

  • Lee, Hikweon;Kim, Kideok;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • Chemical reaction tests were performed to assess the properties of hardened specimens of cement pastes (KS-1 Portland and Class G) exposed to supercritical CO2 for 1, 10, and 100 days. After exposure, the samples' measured permeability and strength were compared with values measured for pristine samples. The pristine cements had permeabilities of 0.009~0.025 mD, which increased by one order of magnitude after 100 days of exposure (to 0.11~0.29 mD). The enhancement of permeability is attributed to the stress release experienced by the samples after removal from the pressure vessel after exposure. Despite its enhancement, the measured permeability mostly remained lower than the API (American Petroleum Institute) recommended maximum value of 0.2 mD. The degradation of the cement samples due to exposure to supercritical CO2 led to a layer of altered material advancing inwards from the sample edges. The Vickers hardness in the altered zone was much higher than that in the unaltered zone, possibly owing to the increase in density and the decrease in porosity due to the carbonation that occurred in the altered zone. Hardness close to the edge within the altered zone was found to have decreased significantly, which is attributed to the conversion of C-S-H into less-strong amorphous silica.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.