• Title/Summary/Keyword: water corrosion

Search Result 1,466, Processing Time 0.029 seconds

Impedance Change of Aluminum Pad Coated with Epoxy Molding Compound for Semiconductor Encapsulant (반도체 패키지 봉지재용 에폭시 수지 조성물이 코팅된 알루미늄 패드의 임피던스 변화)

  • 이상훈;서광석;윤호규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • The corrosion behavior of aluminum pad coated with epoxy molding compound (EMC) was investigated using electrochemical impedance spectroscopy (EIS). The impedance change was evaluated by the absorption of deionized water (DI water) to EMC coating and the interface between EMC and aluminum. During the absorption a decrease in resistance and thus an increase in capacitance of EMC as well as the interface of EMC/Al could be observed. Up to about 170 hours of absorption the EMC was saturated with the water molecules and ions generated from EMC. Subsequently the ionic water was penetrated to the interface and finally the corrosion of aluminum was occurred by the Dl water and ions. From measuring the adhesion strength with the Dl water absorption it was expected that the saturation of water and ions in the interface decreased the adhesion strength. The higher filler content of EMC should be necessary to inhibit the corrosion of aluminum electrode in microelectronic packages.

  • PDF

Property Analysis of Waterproofing and Corrosion-Resistant Performance in Concrete Water Supply Facilities (상수도시설 콘크리트 수조구조물에서의 염화이온 침투저항 특성분석)

  • Kwak, Kyu-Sung;Ma, Seung-Jae;Choi, Sung-Min;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.122-131
    • /
    • 2015
  • The purpose of this study is to understand the necessity for waterproofing and corrosion-resistant technique application on concrete water tank used in water supply. Relevant research materials and regulation were collected, reviewing for the case studies of sample structures aged over 20 years, and experimental studies on chloride conduction for the high performance concrete and penetration properties of water repellency of liquid type materials. The result is that the concrete water tank in the water supply is needed for waterproofing and corrosion-resistant material coating to maintain long term durability due to the constant environmentally induced degradation deterioration often caused by chloride attack.

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(I) - Determination of Optimum Operational Conditions in Lime Adding Process (소석회와 CO2를 이용한 상수관로의 부식제어(I) - 소석회 주입공정의 최적 운전인자 도출)

  • Sohn, Byung-Young;Byun, Kyu-Sik;Kim, Young-Il;Lee, Doo-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to determine the optimum operational condition in lime adding process in water treatment plant(WTP). The mixing time at dissolution tank and sedimentation time at saturator for maintaining optimal turbidity condition of lime supernatant were 60~75 minutes and 75~95 minutes, respectively. There was no difference according to $CO_2$ adding methods such as $CO_2$ saturated water or $CO_2$ gas. But, $CO_2$ saturated water could be convenience at WTP in terms of pH control and quantitative dosing. To minimize generation of calcium carbonate products, the short time interval between adding of lime and $CO_2$ is most important. The lime should be added below 32 mg/l for preventing pH rising and generation of calcium carbonate products at the heating condition.

An analysis on the Causes of the Under-Potential in the Electric Anti-corrosion Section (전기방식(電氣防蝕) 적용구간의 전위 미달 원인 분석)

  • Lee, Eun-Chun;Ryu, Keong-Man;Yoon, Han-Bong;Shin, Gang-Wook;Hong, Sung-Taek;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.55-57
    • /
    • 2005
  • Along with the development of the industrial society, as the transportation of water which is the indirect capital of society and petroleum, gas, etc used as energy sources is rapidly increased. the underground material is being expanded. Like this, the pipes laid under the ground not only bring the corrosion to the land circumstances to reduce the life of the pipes, but also raise the social problem of leakage accidents and the economic loss by Pin Hole. By reason of this, for the purpose of protecting the corrosion of the underground material, we are constructing and operating the electrolytic protection facilities. In case of a region of which specific resistance is high, however, we are not keeping proper protection potential(that is -850mV) to get protection effects. In this study, for the water pipes that under-voltage phenomena occur in the protection potential, we made a spot survey on the under-voltage section and normal-voltage section, compared, analyzed each of the contents and examined the under-voltage causes of the protection potential.

  • PDF

Radiochemical behavior of nitrogen species in high temperature water

  • Young-Jin Kim;Geun Dong Song;Seung Heon Baek;Beom Kyu Kim;Jin Sik Cheon;Jun Hwan Kim;Hee-Sang Shim;Soon-Hyeok Jeon;Hyunmyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3183-3193
    • /
    • 2023
  • The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water.

Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

  • Shin, Jae-Gyeong;Park, Chan-Jin;Hong, Sung-Kil
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.40-43
    • /
    • 2009
  • We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro- galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

Nuclear Corrosion: Achievements and Challenges

  • Feron, Damien
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Corrosion science faces new challenges in various nuclear environments. Three main areas may be identified where increases of knowledge and understanding have been done and are still needed to face the technical needs: (i) the extension of the service time of nuclear power plants from 40 years, as initially planned, to 60 years and probably more as expected now, (ii) the prediction of long term behaviour of metallic materials in nuclear waste disposal where the corrosion processes have to be predicted over large periods of time, some thousands years and more, (iii) the choice of materials for use at very high temperatures as expected in Generation IV power plants in environments like gas (helium), supercritical water, liquid metals or salts. Service time extension, deep geological waste repositories and high temperature reactors sustain researches and developments to model corrosion phenomena at various scales, from atoms to components.

Corrosion Test for Reinforcement Steels Embedded in Slab Specimen (슬래브 매입철근의 부식실험)

  • 류금성;유환구;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.129-134
    • /
    • 1999
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are to salts and chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely affect the durability of concrete structures. the objective of this research is to develop a durable concrete by investigating the resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors, etc. A two-year verification test on various corrosion protection system has been doing in the laboratory. Corrosion investigations on reinforcement steel are now under progress for more than 63 concrete specimen. Corrosion-related measurements include microcell corrosion current.

  • PDF

Corrosion Behavior Analysis of the Weld Joint between Stainless Steel and Carbon Steel (스테인리스강과 탄소강 용접부의 부식거동 해석)

  • 권재도;이우호;김길수;장순식;진영준
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.66-70
    • /
    • 1999
  • In order to investigate the quantitative behavior of galvanic corrosion in weld joints between stainless std이 and carbon steel, electrochemical polarization experiments were performed at pH4, pH7 and pH10 with boric acid concentration 4000ppm, and water temperature were selected as $35^{\circ}$C and $60^{\circ}$C. As the results, the galvanic corrosion phenomena of carbon steel weld material at $60^{\circ}$C was revealed $2{1\over2}$ times higher corrosion rate than that at $35^{\circ}$C condition. The corrosion rate of stainless steel was almost inedependent of the variation of pH. The significant corrosion rates of carbon steel and the weld joint of carbon-carbon steel were observed at pH 4.

  • PDF