DOI QR코드

DOI QR Code

시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite

  • 두여준 (고려대학교 건축사회환경공학과) ;
  • 장인동 (고려대학교 건축사회환경공학과) ;
  • 이혜린 (국민대학교 건설시스템공학부) ;
  • 이종구 (고려대학교 건축사회환경공학과)
  • 투고 : 2021.10.20
  • 심사 : 2022.02.24
  • 발행 : 2022.04.30

초록

철근 콘크리트 구조물 수명 저하의 주요한 원인은 콘크리트 내부 철근의 부식이다. 이때 사전 부식된 구조물 내부 철근은 다른 철근에 비해 더 쉽게 부식되며, 특히 구조물이 습기 또는 염화 환경에 노출된 경우 부식의 진행속도가 매우 빠른 것으로 알려져 있다. 본 연구에서는 시멘트 복합재 내부의 사전 부식 철근에 대한 서로 다른 양생 용액이 부식에 미치는 영향을 탐구하였다. 철근의 사전 부식을 촉진하기 위해 HCl(3%)용액과 CaCl2(10%)용액을 활용하였으며, 대조군(RE)을 포함한 3종의 사전 부식 철근 모르타르 실린더를 타설하였다. 철근 모르타르 실린더는 CaCl2(3%) 용액과 수돗물에서 각각 120일 동안 양생하며 실험을 진행하였다. 사전 부식 철근의 모르타르 내부 부식 거동에 대한 양생 용액의 영향을 평가하기 위해 전기화학적 분극저항(Electrochemical Polarization)과 반전지 전위 측정법(Half-cell potential)을 활용하였으며, 전자주사현미경(SEM)과 X선 회절 분석(X-ray Diffraction Analysis)을 통해 부식된 철근의 표면 상태와 성분을 분석하였다. 실험 결과 두 종류의 양생 용액에서 사전 부식된 철근의 부식률은 사전 부식되지 않은 시료의 부식률보다 높은 것으로 나타났으며, CaCl2 용액 양생 120일의 RE, CaCl2, HCl 사전 부식 시편의 최종 부식 속도가 수돗물에 양생한 경우보다 각각 8.14, 4.48, 13.81배로 높았다.

The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.

키워드

과제정보

본 연구는 정부(교육부)의 재원으로 한국연구재단 이공학 개인기초연구지원사업의 지원(NRF-2018R1D1A1B07043353)에 의해 수행되었습니다.

참고문헌

  1. Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction--a review. Cement and concrete composites, 25(4-5), 459-471. https://doi.org/10.1016/S0958-9465(02)00086-0
  2. Ai, Z., Sun, W., Jiang, J., Song, D., Ma, H., Zhang, J., & Wang, D. (2016). Passivation characteristics of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions: combination effects of pH and chloride. Materials, 9(9), 749. https://doi.org/10.3390/ma9090749
  3. Al-Amoudi, O. S. B. (1985). Studies on the evaluation of permeability and corrosion resisting characteristics of Portland pozzolan concrete. King Fahd University of Petroleum and Minerals (Saudi Arabia).
  4. Angst, U. M., Geiker, M. R., Michel, A., Gehlen, C., Wong, H., Isgor, O. B., Hornbostel, K. (2017). The steel-concrete interface. Materials and Structures, 50(2), 1-24. https://doi.org/10.1617/s11527-016-0885-6
  5. Ann, K. Y., & Song, H.-W. (2007). Chloride threshold level for corrosion of steel in concrete. Corrosion science, 49(11), 4113-4133. https://doi.org/10.1016/j.corsci.2007.05.007
  6. Bazan, A., Galvez, J., Reyes, E., & Gale-Lamuela, D. (2018). Study of the rust penetration and circumferential stresses in reinforced concrete at early stages of an accelerated corrosion test by means of combined SEM, EDS and strain gauges. Construction and Building Materials, 184, 655-667. https://doi.org/10.1016/j.conbuildmat.2018.06.195
  7. Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair: John Wiley & Sons.
  8. Burtuujin, G., Son, D., Jang, I., Yi, C., & Lee, H. (2020). Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments. Applied Sciences, 10(23), 8705. https://doi.org/10.3390/app10238705
  9. De La Fuente, D., D?az, I., Alc?ntara, J., Chico, B., Simancas, J., Llorente, I., Morcillo, M. (2016). Corrosion mechanisms of mild steel in chloride-rich atmospheres. Materials and Corrosion, 67(3), 227-238. doi:10.1002/maco.201508488
  10. Goto, S., & Roy, D. M. (1981). The effect of w/c ratio and curing temperature on the permeability of hardened cement paste. Cement and Concrete Research, 11(4), 575-579. https://doi.org/10.1016/0008-8846(81)90087-9
  11. Goyal, A., Pouya, H. S., Ganjian, E., & Claisse, P. (2018). A review of corrosion and protection of steel in concrete. Arabian Journal for Science and Engineering, 43(10), 5035-5055. https://doi.org/10.1007/s13369-018-3303-2
  12. Hua, Y., Mohammed, S., Barker, R., & Neville, A. (2020). Comparisons of corrosion behaviour for X65 and low Cr steels in high pressure CO2-saturated brine. Journal of Materials Science & Technology, 41, 21-32. https://doi.org/10.1016/j.jmst.2019.08.050
  13. Jumaat, M. Z., Kabir, M., & Obaydullah, M. (2006). A review of the repair of reinforced concrete beams. Journal of Applied Science Research, 2(6), 317-326.
  14. Li, X., Wang, H., Wang, J., & Liu, J. (2021). Experimental Analysis of Reinforcement Rust in Cement under Corrosive Environment. Coatings, 11(2), 241. https://doi.org/10.3390/coatings11020241
  15. Liu, T., & Weyers, R. (1998). Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement and Concrete Research, 28(3), 365-379. https://doi.org/10.1016/S0008-8846(98)00259-2
  16. Lopez, W., Gonzalez, J., & Andrade, C. (1993). Influence of temperature on the service life of rebars. Cement and Concrete Research, 23(5), 1130-1140. https://doi.org/10.1016/0008-8846(93)90173-7
  17. Ming, J., & Shi, J. (2019). Distribution of corrosion products at the steel-concrete interface: Influence of mill scale properties, reinforcing steel type and corrosion inducing method. Construction and Building Materials, 229, 116854. https://doi.org/10.1016/j.conbuildmat.2019.116854
  18. Ming, J., Shi, J., & Sun, W. (2020). Effects of mill scale and steel type on passivation and accelerated corrosion behavior of reinforcing steels in concrete. Journal of Materials in Civil Engineering, 32(4), 04020029. https://doi.org/10.1061/(asce)mt.1943-5533.0003139
  19. Popov, B. N. (2015). Corrosion engineering: principles and solved problems: Elsevier.
  20. Sagoe-Crentsil, K., & Glasser, F. P. (1993). "Green rust", iron solubility and the role of chloride in the corrosion of steel at high pH. Cement and Concrete Research, 23(4), 785-791. https://doi.org/10.1016/0008-8846(93)90032-5
  21. Tahri, W., Hu, X., Shi, C., & Zhang, Z. (2021). Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Construction and Building Materials, 293, 123484. https://doi.org/10.1016/j.conbuildmat.2021.123484
  22. Tuutti, K. (1982). Corrosion of steel in concrete. Lund University,
  23. Vera, R., Villarroel, M., Carvajal, A., Vera, E., & Ortiz, C. (2009). Critical thickness of rust layer at inner and out surface cracking of concrete cover in reinforced concrete structures. Materials Chemistry and Physics, 114(1), 467-474. https://doi.org/10.1016/j.matchemphys.2008.09.063
  24. Zhao, Y., Yu, J., Wu, Y., & Jin, W. (2012). Critical thickness of rust layer at inner and out surface cracking of concrete cover in reinforced concrete structures. Corrosion science, 59, 316-323. https://doi.org/10.1016/j.corsci.2012.03.018