• Title/Summary/Keyword: warm-season turfgrass

Search Result 52, Processing Time 0.03 seconds

Ecological Studies on the Warm-Season Turfgrass and Cool-Season Turfgrass Mixtures (난지형 잔디와 한지형 잔디의 혼식에 관한 생태학적 연구)

  • Park, Bong-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Five warm-season turfgrass [Zoysia japonica Steud., Stenotaphrum secundatum (Walt.) Kuntze, Buchloe dactyloides (Nutt.) Engelm., Eremochloa ophiuroides (Munro.) Hack. and Cynodon dactylon (L.) Pers.] were overseeded with 2 cool-season turfgrasses [Poa pratensis L. and Festuca arundinacea Schreb.] to examine suitability of these species for planting in mixture for producing a year-round turf. Percent of warm-season and cool-season turfgrasses in the mixture were estimated for 5 years. Also, to evaluate the fertilization times of the warm-season and cool-season turrfgras mixtures. Eremochloa ophiuroides and Buchloe dactyloides were not suitable for warm-season and cool-season turfgrass mixtures. However, Zoysia japonica, Stenotaphrum secundatum and Cynodon dactylon were suitable for warm-season and cool-season turfgrass mixtures. Zoysia japonica, Stenotaphrum secundatum and Cynodon dactylon were showed approximately 50% botanical composition five years after cool-season turfgrass overseeding. And, those three warm-season turfgrass mixtures showed approximately 20% visual ratings in winter period. Fertilization in early spring and late autumn had made cool-season turfgrass dominated in mixtures. Therefore, fertilization times in warm-season and cool-season turfgrass mixtures was desirable in summer period.

Ecological Management of Turf Insects and Zoysia Large Patch by Mixing Turfgrass Species (잔디 혼식을 통한 생태학적 병충해 관리)

  • 박봉주
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Ecological control can contribute to the sustainibility of vegetation management systems by reducing the input currently derived from non-renewable fossil energy sources. The use of turfgrass mixtures is an important tool in turf management. Turfgrass mixtures of two or more compatible and adapted species provide improved tolerance to pest and environmental stress, more so than monostands. The objectives of this study were to evaluated turf insects, pests and zoysia large patch control by turgrass mixtures. In April 2001 and 2002, plots were inoculated with 50g of Rhizoctonia solani AG2-2LP inoculum. Inoculum were treated within a 29cm diamater circle at Zoysia japonica, Zoysia japonica, Poa pratenis, or Festuca arundinacea mixtures. After four weeks, disease severity in each plot was determined. plot area visual ratings were assessed visually on a linera 0 to 100%. In August 2001 and October 2002, turf insects and pests in each plot were investigated in 10cm deep soil cores with 8cm diameters using hole cut. Zoysia large patch affected zoysiagrass monostands more severly than zoysiagrass and cool-season turfgrasses mixtures. It was suggested that the barrier effect of cool-season turfgrass suppressed zoysia large patch in the mixture of zoysiagrass and cool-season turfgrasses. Also, warm-season and cool-season turfgrasses mixtures suppressed insect populations more efficiently than warm-season turfgrass monostands.

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

Studies on the Identification of Turfgrass by Electrophoresis (SDS-PAGE, PAGIF) (전기영동법 (SDS-PAGE, PAGIF)에 의한 잔디 분류에 관한 연구)

  • 박재복;김영후;이수영
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.11-22
    • /
    • 1991
  • This experiment was executed to investigate the possibility of the application of taxonomic method through the isoelectric focusing with polyacrylamide gel and sodium dodecyl sulfate-polyacrylamide gel electrophoresis with seeds in the identification of turfgrasses. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to investigate the pattern of seed proteins which were extracted from 18 cultivars of cool season turfgrass and 4 cultivars of warm season turfgrass. The isoelectric focusing with polyacrylarnide gel was used to investigate the activity of the three isozymes of esterase, peroxidase and phosphoglucose isomerase which were extracted from 18 cultivars of cool season turfgrass and 4 cultivars of warm season turfgrass. The results were summarized as follows. 1. The difference of the patterns of seed proteins was observed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The identification of intra-genus was easily detected. 2. The three isozymes of esterase, peroxidase and phosphoglucose isomerase were investigated through isoelectric focusing with polyacrylamide gel. As a result, esterase was most effective among three isozymes in the identification of turfgrass cultivars 3. In the past cultivar identification was primarily based on visual morphological characters, but there was a lot of difficulty. If we should use electrophoresis, we will be able to identifvturfgrass cultivars more effectively.

  • PDF

Studies on Photosynthetic and Respiratory Characteristics in Warm Season and Cool Season Turfgrasses (한지형(寒地型) 잔디와 난지형(暖地型) 잔디의 광합성(光合成) 및 호흡특성(呼吸特性))

  • Nan, Xuan Song;Kaneko, Seiji;Ishii, Ryuichi
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.166-174
    • /
    • 1995
  • This experiment was conducted to investigate a cause of summer depression of cool season turfgrass, using nine cultivars in warm season and twenty-eight cool season turfgrasses. Even though an average of apparent photosynthesis(APS) per fresh weight was 13.09 mg $CO_2$/g/h in warm season turfgrass and 7.75 mg $CO_2$/g/h in cool season turfgrass, the Creeping bentgrass in cool season type was higher than Kikuyugrass and Bahiagrass in warm season type. The optimum temperature for the heighest APS was $30^{\circ}C$ in warm season type and $25^{\circ}C$ in cool season type. In $CO_2$ compensation point(CCP) as an index of dark respiration, it was higher in cool season turfgrass(75.6ppm) than warm season turfgrass(29.5ppm). In warm season type, even though the temperature increased from $25^{\circ}C$ to $40^{\circ}C$ the CCP was not increased. But the higher temperature rises the more increased CCP in cool season type. Dark respiration(DR) was higher in cool season type than warm season type under various temperature conditions, but the increasing ratio of DR with the temperature increment was not so much differed between two types.

  • PDF

Effects of the Turfgrass Species and Crumb Rubber on Wear Tolerance (내답압성에 미치는 잔디 초종과 고무칩의 영향)

  • Park, Bong-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.5
    • /
    • pp.40-47
    • /
    • 2003
  • This study examined the improved effect of wear tolerance of warm-season turfgrass overseeded with cool-season turfgrasses. Also, it investigated the improved effect of crumb rubber on wear tolerance and the difference anmong cultivars regarding the wear of Zoysia spp. In wear experiment during summer, the warm-season turfgrass overseed with cool-season turfgrasses had a higher visual rating on the ground than the monostand of Cynodon dactylon. Moreover, in wear experiment in winter, barrenness showed significant progress in the monostand of C. dactylon, while the barrenness did not appear at all in overseeded turf with cool-season turfgrasses. As a result of investigating the bulk density was increased in the monostand of C. dactylon, but not in the overseed turf with cool-season turfgrasses. From the above result, the wear tolerance effcect of turfgrasses appeared year round through warm-season and cool-season turfgrass mixtures. Also, it was found that the method of topdressing crumb rubber on the ground was effective as a physical assistant device alleviating damage of turfgrasses. The possibility of improving wear tolerance was accepted by adding soil amendments such as perlite, pamis, etc., in order to promote the growth of turfgrass.

The Differences of Thatch Accumulation by Turfgrass Species (잔디 초종에 따른 Thatch 축적의 차이)

  • 윤용범;이주삼
    • Asian Journal of Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.119-123
    • /
    • 1990
  • The experiment was carried out to analysis the differences between classification by the estimate of survey character and thatch accumulation. The results obtained are summarized as follows:1.BentgrassPenncross: had the highest thatch accumulation. 2.Thatch accumulation of creeping season turf was higher than that of bunch type and thatch accumulation of cool season turf was higher than that of warm season turf. 3.The coverage rate was 43.3%, so turf quality was not good. 4.Bermudagrass(Guymon) had the highest content of lignin in thatch and coverage rate. 5.Species had significant negative correlation with the content of lignin.

  • PDF

H2O2 Pretreatment Modulates Growth and the Antioxidant Defense System of Drought-stressed Zoysiagrass and Kentucky Bluegrass

  • Bae, Eun-Ji;Han, Jeong-Ji;Choi, Su-Min;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.383-395
    • /
    • 2016
  • This study investigated the effect of exogenous hydrogen peroxide ($H_2O_2$) on the antioxidant responses and growth of warm-season turfgrass (Zoysia japonica Steud.) and cool-season turfgrass (Poa pratensis L.) subjected to drought stress. Compared with control plants that were not pretreated with $H_2O_2$, plants pretreated with $H_2O_2$ had significantly greater fresh and dry weights of shoots and roots, and increased water content. $H_2O_2$ pretreatments before drought stress significantly decreased the concentrations of malondialdehyde and $H_2O_2$. DPPH radical scavenging and glutathione activities were significantly increased. The responsive activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase were also significantly enhanced. Our results suggest that exogenous $H_2O_2$ could improve the growth of warm-season and cool-season turfgrass under drought stress by increasing the activity of their antioxidant enzymes, while decreasing lipid peroxidation.

Characteristics of large patch occurrence at warm-season turfgrass in golf course (골프장의 난지형 잔디에 발생하는 Large patch의 발병 특성)

  • Woo, Hyun-Nyung;Kim, Gi-Rim;Kim, Hye-JIn;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.243-248
    • /
    • 2011
  • This investigation was conducted to develop an integrated disease management system against large patch disease occurred in a golf course. Large patch, brown patch, and Rhizoctonia blight sometimes are used interchangeably by turfgrass managers and researchers, Large patch disease of zoysiagrass is caused by a soilborne fungus called Rhizoctonia solani. Although this fungus is very similar to the one that causes brown patch disease of cool-season turfgrasses in mid-summer. Large patch development is favored by high thatch and soil moisture. Avoid overwatering the turfgrass, especially in the fall or early spring. Poorly-drained areas are very susceptible to injury from large patch and should be reconstructed (draining tiles, etc) to avoid soil saturation. However, control of yellow patch with fungicides is normally not recommended because the disease has only cosmetic effects and symptoms are usually very short-lived. Therefore, we reviewed the symptom of large patch to look for control method by soil management method.

Sensor-based Technology for Assessing Drought Stress in Two Warm-Season Turfgrasses (난지형 잔디의 건조 스트레스를 측정하기 위한 센서 기술 연구)

  • Lee, Joon-Hee;Trenholm, Laurie E.;Unruh, J. Bryan;Hur, Jae-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.213-221
    • /
    • 2006
  • This study was designed to determine what sensor-based technologies might reliably and accurately predict irrigation scheduling needs of warm-season turfgrass. 'Floratam' St. Augustinegrass[Stenotaphrum secundatum(Walt.) Kuntze] and 'Sea Isle I' seashore paspalum(Paspalum vaginatum Swartz) were established in tubs in the Envirotron Turfgrass Research Laboratory in Gainesville, FL in the spring of 2002. Each grass was subjected to repeated dry-down cycles where irrigation was withheld. Sensor-based data were collected and these evaluations were used to determine if irrigation scheduling could be determined based on plant response during dry-down. Results indicated that reflectance indices($P{\le}0.001$) and soil moisture($P{\le}0.0001$) throughout the dry-down cycle can predict the need for irrigation scheduling as turf quality declined below acceptable levels.