• Title/Summary/Keyword: voltage sensor

Search Result 1,544, Processing Time 0.028 seconds

Blooming Suppression of an npn MOS Image Sensor (npn MOS 영상소자의 블루밍억제에 관한 연구)

  • 갑형철;민홍식;이종덕
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.417-421
    • /
    • 1988
  • In order to analyze the blooming suppression mechanism of a MOS image sensor, test photodiodes have been fabricated and characterized by attaching a source follower circuit. The blooming suppression ability of npn structure compared to that of np structure is quantitatively analyzed and measured by experiment. The dependency of the blooming current on the substrate voltage, the vertical MOS gate voltage and the video voltage is measured and the optimum condition for blooming suppression is presented.

  • PDF

Fiber Optic AC Voltage Sensor Using Fringe Counting (간섭무늬의 변화갯수 측정을 이용한 광섬유 교류전압센서)

  • 김봉규;김병윤;김만식
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.158-165
    • /
    • 1994
  • A fiber optic voltage sensor is demonstrated with a new signal processing scheme that displays the magnitude and the waveform of applied voltage with immunity from the signal frequency change. The sensor is based on a Mach-Zehnder interferometer with a PZT phase modulator as a sensing element. We observed a linear relationship between applied voltage and the number of fringe shift during a half cycle of the ac signal. The temperature dependence of the sensor output is experimentally evaluated over the temperature range from $-20^{\circ}C to 80^{\circ}C$. It is demonstrated that the detrimental polarization modulation effect can be overcome by using polarization maintaining fibers or a half-wave plate. plate.

  • PDF

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback (압전전압 궤환에 의한 미세구동 연삭테이블의 개발)

  • Nam, Soo-Ryong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF

A temperature sensor with low standard deviation with generating reference voltage for use in IoT applications (IoT 어플리케이션에서 활용하는 참조 전압을 같이 생성할 수 있는 표준 편차가 낮은 온도 센서)

  • Juwon Oh;Younggun Pu;Yeonjae Jung;Kangyoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2024
  • This paper presents a circuit design aimed at generating the required reference voltage and temperature sensor voltage in conjunction with an ADC, utilizing the current generated by temperature characteristics of BJT components for sensor data conversion. Additionally, two control methods are introduced to reduce the standard deviation of the circuit, resulting in over a ten-fold decrease in standard deviation. The proposed circuit occupies an area of 0.057mm2 and was implemented using 55nm RF process.

PD Diagnosis on 22.9kV XLPE Underground Cable using Ultra-wideband Sensor

  • Lwin, Kyaw-Soe;Lim, Kwang-Jin;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.422-429
    • /
    • 2008
  • This paper presents compact low frequency ultra-wide band (UWB) sensor design and study of the partial discharge diagnosis by sensing electromagnetic pulse emitted from the partial discharge source with the newly designed UWB sensor. In this study, we designed a new type of compact low frequency UWB sensor based on microstrip antenna technology to detect both the low frequency and high frequency band of the partial discharge signal. Experiments of offline PD testing on medium voltage (22.9kV) underground cable mention the comparative results with the traditional HFCT as a reference sensor in the laboratory. In the series of comparative tests, the calibration signal injection test provided with the conventional IEC 60270 method and high voltage injection testing are included.

Analysis of Leakage Current of a Laser Diode by Equivalent Circuit Model (등가회로 모델에 의한 레이저다이오드의 누설전류 해석)

  • Choi, Young-Kyu;Kim, Ki-Rae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.330-336
    • /
    • 2007
  • A single pixel photon counting type image sensor which is applicable for medical diagnosis with digitally obtained image and industrial purpose has tern designed with $0.18{\mu}m$ triple-well CMOS process. The designed single pixel for readout chip is able to be operated by single supply voltage to simplify digital X-ray image sensor module and a preamplifier which is consist of folded cascode CMOS operational amplifier has been designed to enlarge signal voltage(${\Delta}Vs$), the output voltage of preamplifier. And an externally tunable threshold voltage generator circuit which generates threshold voltage in the readout chip has been newly proposed against the conventional external threshold voltage supply. In addition, A dark current compensation circuit for reducing dark current noise from photo diode is proposed and 15bit LFSR(Linear Feedback Shift Resister) Counter which is able to have high counting frequency and small layout area is designed.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

Magnet Location Estimation Technology in 3D Using MI Sensors (MI센서를 이용한 3차원상 자석 위치 추정 기술)

  • Ju Hyeok Jo;Hwa Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.