• Title/Summary/Keyword: voltage sensor

Search Result 1,544, Processing Time 0.025 seconds

Flyback Inverter Using Voltage Sensorless MPPT for Photovoltaic AC Modules

  • Ryu, Dong-Kyun;Choi, Bong-Yeon;Lee, Soon-Ryung;Kim, Young-Ho;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1293-1302
    • /
    • 2014
  • A flyback inverter using voltage sensorless maximum power point tracking (MPPT) for photovoltaic (PV) AC modules is presented. PV AC modules for a power rating from 150 W to 300 W are generally required for their small size and low price because of the installation on the back side of PV modules. In the conventional MPPT technique for PV AC modules, sensors for detecting PV voltage and PV current are required to calculate the PV output power. However, system size and cost increase when the voltage sensor and current sensor are used because of the addition of the auxiliary circuit for the sensors. The proposed method uses only the current sensor to track the MPP point. Therefore, the proposed control method overcomes drawbacks of the conventional control method. Theoretical analysis, simulation, and experiment are performed to verify the proposed control method.

DFSS-Based Design of a Hall-Effect Rotary Position Sensor (DFSS 를 이용한 홀 효과 기반 회전형 위치 센서의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This work presents the application of the DFSS (Design for Six Sigma) methodology to optimizing both the linearity and the sensitivity of the output voltage of a Hall-effect rotary position sensor. To this end, the dimensions and relative positions of a permanent magnet with reference to a Hall sensor are selected as the design factors for a full factorial design. In order to evaluate the output voltage of the rotary position sensor at each run in the experimental design, analytical solutions to the magnetic flux density were obtained using the Biot-Savart law and the relations between the magnetic flux density and the output voltage intrinsic to a Hall sensor. Through measurements of the improved output voltage of the rotary position sensors manufactured using the optimized design factors, the proposed method is shown to be simple and practical.

A Self-Powered RFID Sensor Tag for Long-Term Temperature Monitoring in Substation

  • Chen, Zhongbin;Deng, Fangming;He, Yigang;Liang, Zhen;Fu, Zhihui;Zhang, Chaolong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.501-512
    • /
    • 2018
  • Radio frequency identification (RFID) sensor tag provides several advantages including battery-less operation and low cost, which are suitable for long-term monitoring. This paper presents a self-powered RFID temperature sensor tag for online temperature monitoring in substation. The proposed sensor tag is used to measure and process the temperature of high voltage equipments in substation, and then wireless deliver the data. The proposed temperature sensor employs a novel phased-locked loop (PLL)-based architecture and can convert the temperature sensor in frequency domain without a reference clock, which can significantly improve the temperature accuracy. A two-stage rectifier adopts a series of auxiliary floating rectifier to boost its gate voltage for higher power conversion efficiency. The sensor tag chip was fabricated in TSMC $0.18{\mu}m$ 1P6M CMOS process. The measurement results show that the proposed temperature sensor tag achieve a resolution of $0.15^{\circ}C$/LSB and a temperature error of $-0.6/0.7^{\circ}C$ within the range from $-30^{\circ}C$ to $70^{\circ}C$. The proposed sensor tag achieves maximum communication distance of 11.8 m.

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

Temperature sensor without reference resistor by indium tin oxide and molybdenum (인듐틴옥사이드와 몰리브데늄을 이용한 외부 기준 저항이 필요 없는 온도센서)

  • Jeon, Ho-Sik;Bae, Byung-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.483-489
    • /
    • 2010
  • Display quality depends on panel temperatures. To compensate it, temperature sensor was integrated on the panel. The conventional temperature sensor integrated on the panel needs external reference resistor. Since the resistance of external resistor can vary according to the variation of the environment temperature, the conventional temperature sensor can make error in temperature sensing. The environmental temperatures can change by the back light unit, driving circuits or chips. In this paper, we proposed a integrated temperature sensor on display panel which does not need external reference resister. Instead of external reference resistor, we used two materials which have different temperature coefficient in resistivity. They are connected serially and the output voltage was measured at the point of connection with the applied voltage to both ends. The proposed sensor was fabricated with indium tin oxide(ITO), and Mo metal electrode temperature sensor which were connected serially. We verified the temperature senor by the measurements of sensitivity, lineality, hysteresis, repeatability, stability, and accuracy.

A Development and Performance Test of Voltage Measurement Accuracy Assessment System for Distribution Equipment (배전기기 전압계측 정밀도 평가시스템 개발 및 성능시험)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Kim, Jae-Han
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.83-89
    • /
    • 2013
  • Power distribution system has been changed from radial system to closed loop or mesh system due to connection of distributed generation growth. Data from distribution equipments which are installed at distribution line is required to be accurate for the performance of DMS(Distribution Management System). This paper analyzes the voltage measurement data from distribution equipment. However, the results of the analysis are confirmed to have some errors in voltage measurement data from distribution equipment. These errors come from aging of voltage sensor in distribution equipment and inaccurate data transfer to FRTU(feeder remote terminal unit) through the controller. The main problem is that the voltage measurement data of distribution equipment can not be assessed after it's first installation at the distribution line. The voltage measurement accuracy assessment system is to assess the voltage measurement data from distribution equipment on hot-line. This study had a field test to verify the performance of system.

Strain Sensor Application Using Cellulose Electro-Active Paper(EAPap) (셀룰로오스 Electro-Active Paper(EAPap)를 이용한 변형률 센서)

  • Jang, Sang-Dong;Kim, Joo-Hyung;Kim, Jae-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.915-921
    • /
    • 2009
  • Cellulose based electro-active paper(EAPap) is considered as a new smart material which has a potential to be used for biomimetic actuators and sensors. Beside of the natural abundance, cellulose EAPap is fascinating with its biodegradability, lightweight, high mechanical strength and low actuation voltage. When the external stress is applied to EAPap, it can generate the electrical output due to its piezoelectric property. Using piezoelectric behavior of EAPap, we studied the feasibility of EAPap as mechanical strain sensor applications and compared to commercial strain sensor. By measuring the induced output voltage from the thin piezoelectric cellulose EAPap under static and dynamic force, we propose cellulose EAPap film as a potential strain sensor material.

A Study on Temperature Compensation of Silicon Piezoresistive Pressure Sensor (실리콘 저항형 압력센서의 온도 보상에 관한 연구)

  • 최시영;박상준;김우정;정광화;김국진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.563-570
    • /
    • 1990
  • A silicon pressure sensor made of a full bridge of diffused resistors was designed and fabricated using semiconductor integrated circuit process. Thin diaphragms with 30\ulcorner thickness were obtained using anisotropic wet chemical etching technique. Our device showed strong temperature dependence. Compensation networks are used to compensate for the temperature dependence of the pressure sensor. The bridge supply voltage having positive temperature coefficient by compensation networks was utilized against the negative temperature coefficient of bridge output voltage. The sensitivity fluctuation of pressure sensor before temperature compensation was -1700 ppm/\ulcorner, while it reduced to -710ppm\ulcorner with temperature compensation. Our result shows that the we could develop accurate and reliable pressure sensor over a wide temperature range(-20\ulcorner~50\ulcorner).

  • PDF

A Sensitivity Measurement of Ultrasonic Signals by PZT Sensor (PZT 센서를 이용한 초음파 신호 감도측정)

  • 최인혁;권동진;윤장완;정길조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.403-405
    • /
    • 1999
  • Power transformers have a tendency of ultra-high voltage and huge capacity as power demand increases day after day. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important In power transformers because of economic loss and its spreading effect. Hence, this study presents experiments of partial discharge method using ultrasonic sensor in order to confirm the possibility of ultrasonic sensor in power transformers. It carries out the experiments of measuring delay time between ultrasonic sensor and transducer, sensitiities by temperature change of oil and by barriers inside transformers. It is also Included wave analysis by ultrasonic sensor for needle-plate electrode powered on through high-voltage equipments.

  • PDF

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.