• Title/Summary/Keyword: voltage capacity

Search Result 979, Processing Time 0.03 seconds

A Study on the Customer Voltage Characteristic Based on the Test Devices for PV Systems (태양광전원 계통연계 시험장치에 의한 수용가전압 특성에 관한 연구)

  • Park, Hyeon-Seok;Son, Joon-Ho;Ji, Seong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4529-4536
    • /
    • 2010
  • This paper develops an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV systems simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and load factor. This paper also proposes a new calculation algorithm for voltage profile to make a comparison between calculation values and test device values. The results show that the test results for the normal operation characteristics of PV systems is very practical and effective.

A Study on the Fire Risk of High-voltage Cables for Electrical Vehicles (전기차용 고전압 케이블의 화재 위험성에 관한 연구)

  • Sin Dong Kang;Ye Jin Park;Si Hyun Kim;Jae-Ho Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.8-14
    • /
    • 2023
  • This study presents the characteristics of short circuits (SCs) caused by excessive currents in high-voltage cables used in electric vehicles and emphasizes the need to calculate the cross-sectional areas of these cables according to the SC current. Three direct current power supplies were connected in parallel to test the SC characteristics caused by excessive currents, and a timer and a magnetic contactor were used to deliver the conduction time and SC current. A circular infrared-radiation heater was used to test the temperature-dependent SC characteristics, a thermocouple was used to measure the temperature, and a shunt resistor was used to measure the current. As the SC current increased, the fusing time of the cable decreased. Additionally, a high-voltage cable (with an area of 16 mm2 ) used in electric vehicles fused when a current (approximately equal to 55 times the allowable current) flowed for 0.2 s (operating time of the protective device). When the SC current is 10 kA, the cable may fuse during the operating time of the protective device, thus creating a fire hazard. In electric vehicles, the size of the SC current increases in proportion to the capacity of the battery. Thus, the cross-sectional areas of the cables used should be calculated accordingly, and cable operations should be properly coordinated with the surrounding protective devices.

Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell (플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성)

  • Lee, Mi-Jai;Chae, Yoo-Jin;Kim, Jin-Ho;Hwang, Jong-Hee;Park, Sang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

Clamped capacitance control of a piezoelectric single crystal vibrator using a generalized impedance converter circuit (범용 임피던스 변환회로를 이용한 압전 단결정 진동자의 제동용량 제어)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The piezoelectric single crystals used in piezoelectric transformers have a problem that power transfer capacity is comparatively low due to their high input impedance. In this study, we suggest a method to improve the power transfer capacity by reducing the high input impedance of the piezoelectric single crystal vibrator by connecting a capacitance increasing circuit to the electrical terminals of the piezoelectric single crystal vibrator where the circuit is a GIC (Generalized Impedance Converter) circuit using operational amplifiers. The result of measuring driving characteristics after applying the designed capacitance increasing circuit to the $128^{\circ}$ rotated Y-cut $LiNbO_3$ crystal vibrator confirmed that the input impedance decreased by 25 %, electromechanical coupling factor increased by 30 %, and the power transfer capacity increased by about 17 to 30 times in voltage conversion characteristics.

A Study on Decision Plan of Hosting Capacity for Distribution Feeder (배전선로 연계용량 선정방안에 관한 연구)

  • Kim, Seong-Man;Oh, Joon-Seok;Kim, Ok-Hee;Lim, Hyeon-Ok;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.653-660
    • /
    • 2021
  • Renewable energy resources are rapidly becoming an integral part of electricity generation portfolios around the world due to declining costs, government subsidies, and corporate sustainability goal. Interacting wind, solar, and load forecast errors can create significant unpredictable impacts on the distribution system, feeder congestion, voltage standard and reactive power stability margins. These impacts will be increasing with the increasing penetration levels of variable renewable generation in the power systems. There is a limit to the maximum amount of renewable energy sources that can be connected in a distribution feeder by the connection rule of transmission & distribution facility in Korea. This study represents the decision plans of hosting capacity for distribution feeders without the need for significant upgrades to the existing transmission infrastructure. Especially, the paper suggests and discusses the hosting capacity standard of feeder cables and minimum load calculation of distribution feeders.

Analysis of Characteristics and Internal Resistance of Seawater Secondary Battery according to its Usage Environment (해수이차전지의 사용 환경에 따른 특성 및 내부 저항 분석)

  • Seung-pyo Kang;Jang-mok Kim;Hyun-jun Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.223-229
    • /
    • 2023
  • Seawater batteries are next-generation secondary batteries that use seawater as a cathode. They utilize marine resources to provide competitive prices, high eco-friendliness, and a structure suitable for marine applications. Based on these advantages, pouch types and prismatic types have been studied and developed assuming natural seawater exposure. However, because of the electrical characteristics of the secondary battery, its capacity and internal resistance vary depending on the use environment. These characteristics are not only utilized for predicting the life of a battery but also have a direct effect on the capacity and power suitable for a specific situation. Therefore, the internal resistance was analyzed in this study by measuring the capacity depending on the seawater battery use environment and the state-of-charge-open-circuit-voltage measurement method.

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes (다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구)

  • Kim, Jung Wook;Choi, Seung-Hyun;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.34-40
    • /
    • 2017
  • Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.

Effects of Brine Immersion and Electrode Contact Type Low Voltage Ohmic Thawing on the Physico-chemical Properties of Pork Meat (염수 침지식 및 전극 접촉식 저전압 Ohmic 해동 처리가 돈육의 이화학적 특성에 미치는 효과)

  • Hong, Geun-Pyo;Min, Sang-Gi;Ko, Se-Hee;Shim, Kook-Bo;Seo, Eun-Ju;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.416-423
    • /
    • 2007
  • This study investigated the effect of ohmic thawing on the physicochemical properties of pork meat. The physicochemical properties of pork meat thawed by brine immersion and electrode contact ohmic systems were compared. A more rapid thawing rate was seen with the electrode contact thawing system than with brine immersion. No significant differences in pH were found with increasing voltage for both thawing methods (p>0.05). Increasing the voltage level tended to decrease drip loss, resulting in increased water holding capacity. The shear forces of pork thawed at 50 V did not differ from the control (p>0.05) for both thawing methods. Although significantly high TBARS (p<0.05) values were found at 20 and 40 V for immersion, and 0 V for contact thawing, increasing the voltage level tended to decrease the TBARS values. Regarding TVBN, no significant effect was observed with increasing voltage levels (p>0.05). The total color difference of pork was significantly higher (p<0.05) with immersion thawing than with electrode contact thawing. These results indicate that brine immersion thawing is favorable at high voltage levels, while lower voltage levels are applicable for electrode contact thawing.

An Experimental Study on Transient Characteristics of PEM Fuel Cell Stack (PEM 연료전지 스택의 과도상태 출력특성에 관한 실험적 연구)

  • Kim, Hyun-il;Hwang, Jae-Soon;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2003-2008
    • /
    • 2007
  • The transient power characteristics of a PEM fuel cell stack was experimentally studied using a commercial 1.2kW PEM fuel cell ($Nexa^{TM}$ Power Module, Ballard Power System Inc.). The conditions in PEM fuel cell stack such as temperature and water content change rather slowly because of their large heat capacity and long channel length, which results in long transient time to converge to a steady state. The steady characteristics of the PEM fuel cell module was determined first, followed by the measurement of its transient characteristics upon stepwise and continuous load current changes. During the stepwise current change from 5A to 25A, the output voltage initially decreased below the steady voltage and then increased gradually. Similar behavior was also observed for the stepwise current change from 25A to 5A. This transient behavior is explained with reference to the evolution of the temperature and water content of the PEM fuel cell stack.

  • PDF

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.