DOI QR코드

DOI QR Code

High Voltage Performance of the Electrical Double Layer Capacitor with Various Electrolytes

다양한 전해액을 적용한 전기이중층 커패시터의 고전압 특성 연구

  • Kim, Jung Wook (Department of Chemical Engineering, Dong-A University) ;
  • Choi, Seung-Hyun (Department of Chemical Engineering, Dong-A University) ;
  • Kim, Jeom-Soo (Department of Chemical Engineering, Dong-A University)
  • 김정욱 (동아대학교 화학공학과) ;
  • 최승현 (동아대학교 화학공학과) ;
  • 김점수 (동아대학교 화학공학과)
  • Received : 2017.01.31
  • Accepted : 2017.04.18
  • Published : 2017.05.31

Abstract

Electric double layer capacitors (EDLC: electric double layer capacitors) have drew attention as an energy storage device for the next generation because of their outstanding power capability and durability. But their usage is somewhat limited due to low energy density over secondary batteries. One of methods to improve the energy of EDLC is expanding the voltage window of cell operation by increasing the charge cut-off voltage. In this study, $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate) and $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate) in AN (acetonitrile) were selected to evaluate the possibility of application at high voltage environment. The LSV (linear sweep voltammetry) measurements showed that the 1.5M SBP-BF4/AN electrolyte was stable over a wide potential window and showed the best electrochemical performance compared to other combinations of electrolytes at high voltage environments (over 3.0 V). Furthermore, TMSP (tris(trimethylsilyl) phosphite) was applied to 1.5M SBP-BF4/AN in order to maintain stable performance at high voltage for the long period of time. The electrolyte with TMSP additive showed the capacity retention of 93% after 10,000 cycles at 3.3 V.

높은 출력의 장점을 가지는 전기이중층 커패시터 (EDLC: electric double layer capacitors)는 이차 전지와 더불어 차세대 에너지 저장장치로서 각광받고 있으나 낮은 에너지 밀도로 인해 그 사용처가 제한적이다. 본 연구에서는 EDLC의 에너지 밀도 향상 방법 중의 하나인 고전압화 구현 시 적합한 전해액을 연구하기 위해 AN (acetonitrile)용매에 $SBP-BF_4$ (spirobipyrrolidinium tetrafluoroborate), $TEA-BF_4$ (tetraethylammonium tetraflouroborate), $EMI-BF_4$ (1-ethyl-3-methylimidazolium tetrafluoroborate)의 세가지 염을 각각 선정하여 다양한 전해액의 조성에 따른 전기화학 특성을 비교 평가하였다. LSV (linear sweep voltammetry)측정에서 1.5M SBP-BF4/AN 전해액은 넓은 전위영역에서 안정함을 보였고, 고전압의 환경 (3.0 V 이상)에서 다른 조합의 전해액들과 비교하여 가장 우수한 전기화학적 성능을 보였다. 또한, 장기적으로 안정적인 성능을 유지하기 위해 리튬이온전지시스템에서 기능성 첨가제 효과가 입증된 TMSP (tris(trimethylsilyl)phosphite) 첨가제를 적용 했을 때 고전압의 환경 (3.3 V)에서 10,000 cycle 후 93%의 높은 용량 유지율을 얻을 수 있었다.

Keywords

References

  1. J. R. Miller and A. F. Burke, 'Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications' J. Electrochem. Soc., 17, 53 (2008).
  2. P. Sharma and T. S. Bhatti, 'A review on electrochemical double-layer capacitors' Energ. Convers. Manage. 51, 2901 (2010). https://doi.org/10.1016/j.enconman.2010.06.031
  3. M. Winter and R. J. Brodd, 'What Are Batteries, Fuel Cells, and Supercapacitors?' Chem. Rev. 104, 4245 (2004). https://doi.org/10.1021/cr020730k
  4. R. Kotz and M. Carlen, 'Principles and applications of electrochemical capacitors' Electrochim. Acta. 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  5. F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, 'Carbons and electrolytes for advanced supercapacitors.' Adv. Mater. 26, 2219 (2014). https://doi.org/10.1002/adma.201304137
  6. C. Yang, J. Kim, W. Cho, B. Cho and B Rim, 'Electrochemical Characteristics of EDLC with various Organic Electrolytes' J. Korean Electrochem. Soc. 4, 113 (2001).
  7. S. Kim, G. Hwang, J. Kim and C. Ryu, 'Electrochemical Characteristics of Supercapacitor Using Ionic Liquid Electrolyte' J. Korean Electrochem. Soc. 14, 201 (2011). https://doi.org/10.5229/JKES.2011.14.4.201
  8. K. Naoi, and P. Simon, 'New Materials and New Configurations for Advanced Electrochemical Capacitors' J. Electrochem. Soc. 17, 34 (2008).
  9. Z. Zhang, Y. Lai, J. Li and Y. Liu, 'Electrochemical behavior of wound supercapacitors with propylene carbonate and acetonitrile based nonaqueous electrolytes' J. Cent. South Univ. T. 16, 247 (2009). https://doi.org/10.1007/s11771-009-0042-2
  10. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes and E. Lust, 'Influence of the solvent properties on the characteristics of a double layer capacitor' J. Power Sources. 133, 320 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.026
  11. M. Ue, 'Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and $\gamma$-Butyrolactone' J. Electrochem. Soc. 141, 3336 (1994). https://doi.org/10.1149/1.2059336
  12. C. Yang, Y. Kim, M. Endo, H. Kanoh, M. Yudasaka, S. Iijima and K. Kaneko, 'Nanowindow-Regulated Specific Capacitance of Supercapacitor Electrodes of Single-Wall Carbon Nanohorns' J. Am. Chem. Soc. 129, 20 (2007). https://doi.org/10.1021/ja065501k
  13. K. Chiba, T. Ueda, Y. Yamaguchi, Y. Oki, F. Saiki and K. Naoi, 'Electrolyte Systems for High Withstand Voltage and Durability II. Alkylated Cyclic Carbonates for Electric Double-Layer Capacitors' J. Electrochem. Soc. 158, A1320 (2011). https://doi.org/10.1149/2.038112jes
  14. J. F. Jover, R. Lugo, H. Toulhoat, P. Simon and T. De Bruin, 'Screening Methodology for the Efficient Pairing of Ionic Liquids and Carbonaceous Electrodes Applied to Electric Energy Storage' J. Phys. Chem. C. 118, 864 (2014).
  15. X. Yu, D. Ruan, C. Wu, J. Wang and Z. Shi, 'Spiro-(1,1')-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors' J. Power Sources. 265, 309 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.144
  16. Y. Lauw, M. D. Horne, T. Rodopoulos, A. Nelson, and F. A. M. Leermakers, 'Electrical Double-Layer Capacitance in Room Temperature Ionic Liquids: Ion-Size and Specific Adsorption Effects' J. Phys. Chem. B 114, 11149 (2010). https://doi.org/10.1021/jp105317e
  17. A.M. Bittner, M. Zhu, Y. Yang, H.F. Waibel, M. Konuma, U. Starkec, C.J. Weber, 'Ageing of electrochemical double layer capacitors' J. Power Sources. 203, 262 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.083
  18. M. Hahn, O. Barbieri, F.P. Campana, R. Kotz, R. Gallay, 'Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes' Appl. Phys. A 82, 633 (2006).
  19. P.W. Ruch, M. Hahn, F. Rosciano, M. Holzapfel, H. Kaiser,W.Scheifele, B. Schmitt, P. Novak, R. Kotz, A. Wokaun, 'In situ X-ray diffraction of the intercalation of $(C_2H_5)_4N^+$ and $BF_4{^+}$ into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes' Electrochim. Acta 53, 1074 (2007). https://doi.org/10.1016/j.electacta.2007.01.069
  20. P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kotz, A. Wokaun, 'Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages' Electrochim. Acta 55, 4412 (2010). https://doi.org/10.1016/j.electacta.2010.02.064
  21. C. Hu, W. Qu, R. Rajagopalan, C. Randall, 'Factors influencing high voltage performance of coconut char derived carbon based electrical double layer capacitor made using acetonitrile and propylene carbonate based electrolytes' J. Power Sources. 272, 90 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.043
  22. G. Yan, X. Li, Z. Wang, H. Guo and C. Wang, 'Tris(trimethylsilyl)phosphate: A film-forming additive for high voltage cathode material in lithium-ion batteries' J. Power Sources. 248, 1306 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.037
  23. S. Ishimoto, Y. Asakawa, M. Shinya and K. Naoi, 'Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors' J. Electrochem. Soc. 156, A563 (2009). https://doi.org/10.1149/1.3126423
  24. S. F. Lux, J. Chevalier, I. T. Lucas and R. Kostecki, 'HF Formation in $LiPF_6$-Based Organic Carbonate Electrolytes' ECS Electrochem. Lett. 2, A121 (2013). https://doi.org/10.1149/2.005312eel