DOI QR코드

DOI QR Code

Clamped capacitance control of a piezoelectric single crystal vibrator using a generalized impedance converter circuit

범용 임피던스 변환회로를 이용한 압전 단결정 진동자의 제동용량 제어

  • Received : 2017.12.12
  • Accepted : 2018.01.30
  • Published : 2018.01.31

Abstract

The piezoelectric single crystals used in piezoelectric transformers have a problem that power transfer capacity is comparatively low due to their high input impedance. In this study, we suggest a method to improve the power transfer capacity by reducing the high input impedance of the piezoelectric single crystal vibrator by connecting a capacitance increasing circuit to the electrical terminals of the piezoelectric single crystal vibrator where the circuit is a GIC (Generalized Impedance Converter) circuit using operational amplifiers. The result of measuring driving characteristics after applying the designed capacitance increasing circuit to the $128^{\circ}$ rotated Y-cut $LiNbO_3$ crystal vibrator confirmed that the input impedance decreased by 25 %, electromechanical coupling factor increased by 30 %, and the power transfer capacity increased by about 17 to 30 times in voltage conversion characteristics.

압전변압기에 사용되는 압전 단결정은 높은 입력 임피던스로 인하여 파워전송용량이 높지 않다는 문제점이 있다. 따라서 본 연구에서는 연산증폭기를 사용한 범용 임피던스 변환(General Impedance Convert, GIC) 회로로 구현된 정전용량 증가회로를 압전 단결정 진동자의 전기단자에 연결함으로써 입력임피던스를 저하시켜 파워전송용량을 향상시킬 수 있는 방법을 제안하였다. $128^{\circ}$회전 Y판 $LiNbO_3$ 단결정 진동자에 설계 제작된 정전용량 증가회로를 적용하여 구동 특성을 측정한 결과, 입력임피턴스는 25 % 감소, 전기-기계결합계수는 30 % 증가, 전압변환 특성에 있어서는 약 17~30배의 출력파워용량이 증가됨을 확인하였다.

Keywords

References

  1. C. A. Rosen, "Ceramic transformers and filters," Proc. Electronic Component Symp., 205 (1956).
  2. K. Nakamura and Y. Adachi, "Piezoelectric transformers using $LiNbO_3$ single crystals" (in Japanese), Trans. IEICE, J80-A, 10, 1694-1698 (1997).
  3. S. Hwang, M. Kim, K. Ha, and G. Kang, "Development of piezoelectric transformer using the single crystal of $LiTaO_3$" (in Korean), J. Korean Sensors Society, 11, 132-137 (2002).
  4. K. Fukuta, J. Ushizawa, and H. Suzuki, "Growth and properties of $Li_2B_4O_7$ single crystal for SAW device applications," Jpn. J. Appl. Phys., 22, 140-142 (1983). https://doi.org/10.7567/JJAPS.22S2.140
  5. H. Nagata and T. Takenaka, "Lead-free piezoelectric ceramics of ($Bi_{1/2}Na_{1/2}$) $TiO_3-KNbO_{3-1/2}(Bi_2O_3-Sc_2O_3)$ system," Jpn. J. Appl. Phys., 37, 5311-5314 (1998). https://doi.org/10.1143/JJAP.37.5311
  6. Y. Ko, M. Kim, K. Ha, and Y. Tomikawa, "PSpice simulation on piezoelectric vibrator with negative impedance converter circuit," Jpn. J. Appl. Phys., 40, 3707-3708 (2001). https://doi.org/10.1143/JJAP.40.3707
  7. Y. Ko, M. Kim, K. Ha, and Y. Tomikawa, "Improvement of sensitivity in flexural-type piezoelectric sensor using negative impedance converter circuit," Jpn. J. Appl. Phys., 41, 3387-3388 (2002). https://doi.org/10.1143/JJAP.41.3387
  8. Y. Tomikawa, C. Kusakabe, K. Ohnishi, K. Sakurai, and M. Tanaka, "Damped capacitance elimination in piezoelectric vibrator using operational amplifier circuit," Jpn. J. Appl. Phys., 35, 3042-3045 (1996). https://doi.org/10.1143/JJAP.35.3042
  9. H. Tamura, Y. Tomikawa, C. Kasakabe, K. Sakurai, and K. Onishi, "Basic investigation for realization of high quality factor of piezoelectric vibrator applying negative elements of NIC circuit" (in Japanese), IEICE technical report. Ultrasonics 96, 17-22 (1996).
  10. T. Qureshi, C. Chatwin, N. Huber, A. Zarafshani, B. Tunstall, and W. Wang, "Comparison of howland and general impedance converter (GIC) circuit based current sources for bio-impedance measurements," J. Phys.: Conf. Ser., 224, 012167 (2010). https://doi.org/10.1088/1742-6596/224/1/012167
  11. J. Anudev and I. Jacob Raglend, "Analytical study of GIC based current source model," IEEE ICAESM, 219-222 (2012).