• Title/Summary/Keyword: visualization of genome information

Search Result 36, Processing Time 0.023 seconds

Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup;Woo, Han-Min;Lee, Dong-Yup;Choi, Hyun-Seok;Kim, Tae-Yong;Yun, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.425-431
    • /
    • 2005
  • The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

The BIOWAY System: A Data Warehouse for Generalized Representation & Visualization of Bio-Pathways

  • Kim, Min Kyung;Seo, Young Joo;Lee, Sang Ho;Song, Eun Ha;Lee, Ho Il;Ahn, Chang Shin;Choi, Eun Chung;Park, Hyun Seok
    • Genomics & Informatics
    • /
    • v.2 no.4
    • /
    • pp.191-194
    • /
    • 2004
  • Exponentially increasing biopathway data in recent years provide us with means to elucidate the large-scale modular organization of the cell. Given the existing information on metabolic and regulatory networks, inferring biopathway information through scientific reasoning or data mining of large scale array data or proteomics data get great attention. Naturally, there is a need for a user-friendly system allowing the user to combine large and diverse pathway data sets from different resources. We built a data warehouse - BIOWAY - for analyzing and visualizing biological pathways, by integrating and customizing resources. We have collected many different types of data in regards to pathway information, including metabolic pathway data from KEGG/LIGAND, signaling pathway data from BIND, and protein information data from SWISS-PROT. In addition to providing general data retrieval mechanism, a successful user interface should provide convenient visualization mechanism since biological pathway data is difficult to conceptualize without graphical representations. Still, the visual interface in the previous systems, at best, uses static images only for the specific categorized pathways. Thus, it is difficult to cope with more complex pathways. In the BIOWAY system, all the pathway data can be displayed in computer generated graphical networks, rather than manually drawn image data. Furthermore, it is designed in such a way that all the pathway maps can be expanded or shrinked, by introducing the concept of super node. A subtle graphic layout algorithm has been applied to best display the pathway data.

A Unified Object Database for Biochemical Pathways

  • Jung, T.S.;Oh, J.S.;Jang, H.K.;Ahn, M.S.;Roh, D.H.;Cho, W.S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.383-387
    • /
    • 2005
  • One of the most important issues in post-genome era is identifying functions of genes and understanding the interaction among them. Such interactions from complex biochemical pathways, which are very useful to understand the organism system. We present an integrated biochemical pathway database system with a set of software tools for reconstruction, visualization, and simulation of the pathways from the database. The novel features of the presented system include: (a) automatic integration of the heterogeneous biochemical pathway databases, (b) gene ontology for high quality of database in the integration and query (c) various biochemical simulations on the pathway database, (d) dynamic pathway reconstruction for the gene list or sequence data, (e) graphical tools which enable users to view the reconstructed pathways in a dynamic form, (f) importing/exporting SBML documents, a data exchange standard for systems biology.

  • PDF

Rough Computational Annotation and Hierarchical Conserved Area Viewing Tool for Genomes Using Multiple Relation Graph. (다중 관계 그래프를 이용한 유전체 보존영역의 계층적 시각화와 개략적 전사 annotation 도구)

  • Lee, Do-Hoon
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.565-571
    • /
    • 2008
  • Due to rapid development of bioinformatics technologies, various biological data have been produced in silico. So now days complicated and large scale biodata are used to accomplish requirement of researcher. Developing visualization and annotation tool using them is still hot issues although those have been studied for a decade. However, diversity and various requirements of users make us hard to develop general purpose tool. In this paper, I propose a novel system, Genome Viewer and Annotation tool (GenoVA), to annotate and visualize among genomes using known information and multiple relation graph. There are several multiple alignment tools but they lose conserved area for complexity of its constrains. The GenoVA extracts all associated information between all pair genomes by extending pairwise alignment. High frequency conserved area and high BLAST score make a block node of relation graph. To represent multiple relation graph, the system connects among associated block nodes. Also the system shows the known information, COG, gene and hierarchical path of block node. In this case, the system can annotates missed area and unknown gene by navigating the special block node's clustering. I experimented ten bacteria genomes for extracting the feature to visualize and annotate among them. GenoVA also supports simple and rough computational annotation of new genome.

JProtein : A Protein Structure Viewer based on Java3D Technology (JProtein : Java3D 기법을 이용한 단백질 구조 뷰어)

  • Moon Nam-Doo;Byun Sang-Hee;Kim Jin-Hong;Han In-Seob;Lee Myung-Joon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1517-1526
    • /
    • 2004
  • Entering the post genome era with an increasing amount of protein data available in public databases, the study of tertiary structure of pro-teins has been artively in progress. To analyze the structure of a protein effectively, it is necessary to visualize the tertiary structure of a protein. Rececntly, many visualization tools based on Java technology have been developed to visualize a protein whose structure has been known. In this paper, we describe a new protein visualization system, named JProtein. It is designed to be an easy-to-use, platform neutral melocular visualization tool. The JProtein system is developed using Java3D technology. Java3D is an API providing a programming interface for 3D representations. The system informs us the angle and the distance of the interacting atoms in amino acids which are visualized, providing several 3D representation models of a protein molecule. In particular, the JProtein system presents synchronous stereo view as well as asynchronous one.

Extending TextAE for annotation of non-contiguous entities

  • Lever, Jake;Altman, Russ;Kim, Jin-Dong
    • Genomics & Informatics
    • /
    • v.18 no.2
    • /
    • pp.15.1-15.6
    • /
    • 2020
  • Named entity recognition tools are used to identify mentions of biomedical entities in free text and are essential components of high-quality information retrieval and extraction systems. Without good entity recognition, methods will mislabel searched text and will miss important information or identify spurious text that will frustrate users. Most tools do not capture non-contiguous entities which are separate spans of text that together refer to an entity, e.g., the entity "type 1 diabetes" in the phrase "type 1 and type 2 diabetes." This type is commonly found in biomedical texts, especially in lists, where multiple biomedical entities are named in shortened form to avoid repeating words. Most text annotation systems, that enable users to view and edit entity annotations, do not support non-contiguous entities. Therefore, experts cannot even visualize non-contiguous entities, let alone annotate them to build valuable datasets for machine learning methods. To combat this problem and as part of the BLAH6 hackathon, we extended the TextAE platform to allow visualization and annotation of non-contiguous entities. This enables users to add new subspans to existing entities by selecting additional text. We integrate this new functionality with TextAE's existing editing functionality to allow easy changes to entity annotation and editing of relation annotations involving non-contiguous entities, with importing and exporting to the PubAnnotation format. Finally, we roughly quantify the problem across the entire accessible biomedical literature to highlight that there are a substantial number of non-contiguous entities that appear in lists that would be missed by most text mining systems.

Design and Implementation of an Ontology-based Knowledge Management System

  • Hideki-Mima;Yoon, Tae-Sung;Katsumori-Matsushima
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.107-111
    • /
    • 2004
  • The purpose of the study is to develop an integrated knowledge management system for the domains of genome and nano-technology, in which terminology-based literature mining, knowledge acquisition, knowledge structuring, and knowledge retrieval are combined. The system supports integrating different types of databases (papers and patents, technologies and innovations) and retrieving different types of knowledge simultaneously. The main objective of the system is to facilitate knowledge acquisition from documents and new knowledge discovery through a terminology-based similarity calculation and a visualization of automatically structured knowledge. Implementation issue of the system is also mentioned.

  • PDF

A Computer-aided Design Tool with Semiautomatic Image-Processing Features for Visualizing Biological Pathways

  • Ham, Sung-Il;Yang, San-Duk;Thong, Chin-Ting;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.7 no.3
    • /
    • pp.168-170
    • /
    • 2009
  • The explosion in biological data resulting from high-throughput experiments requires new software tools to manipulate and display pathways in a way that can integrate disparate sources of information. A visual Java-based CAD tool for drawing and annotating biological pathways with semiautomatic image-processing features is described in this paper. The result of the image-editing process is an XML file for the appropriate links. This tool integrates the pathway images and XML file sources. The system has facilities for linking graphical objects to external databases and is capable of reproducing existing visual representations of pathway maps.

Refactoring the Code for Visualizing Protein Database Information in a 3D Viewer for Software Reusability

  • Chun, Yoo-Jin;Ham, Seong-Il;Yang, San-Duk;Rhie, Arang;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.50-53
    • /
    • 2008
  • We have released five Java Application Programming Interface (API) packages for viewing three-dimensional structures of proteins from the Protein Data Bank. To this end, the user interface of an earlier version has been refactored in an object-oriented fashion, in which refactoring is the process of changing a software system to improve its internal structure, without altering the external behavior. Various GUI design and features have been provided conveniently thanks to the Model-View-Control (MVC) model, which is an architectural pattern used in software engineering. Availability: The source code and API specification can be downloaded from https://sourceforge.net/projects/j3dpsv/.

A Study on layout algorithm for metabolic pathway visualization (대사 경로 시각화를 위한 레이아웃 알고리즘 연구)

  • Song, Eun-Ha;Yong, Seunglim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.95-102
    • /
    • 2013
  • In metabolomics, metabolic pathway is represented by well-displayed graph. Metabolic pathways, especially, have a complex binding structure, which makes the graphical representation hard to visualize. There is a problem that edge crossings exponentially increase as the number of nodes grows. To apply automatic graph layout techniques to the genome-scale metabolic flow of metabolism domains, it is very important to reduce unnecessary edge crossing on a metabolic pathway layout. we proposed a metabolic pathway layout algorithm based on 2-layer layout. Our algorithm searches any meaningful component existing in a pathway, such as circular components, highly connected nodes, and the components are drawn in upper layer. Then the remaining subgraphs except meaningful components are drawn in lower layer by utilizing a new radial layout algorithm. It reduces ultimately reduced the number of edge crossings. This algorithm is the basis of flexible analysis for metabolic pathways.