Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup (Metabolic and Biomolecular Engineering National Laboratory, Department of Chemical and Biomolecular and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology) ;
  • Woo, Han-Min (Metabolic and Biomolecular Engineering National Laboratory, Department of Chemical and Biomolecular and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology) ;
  • Lee, Dong-Yup (Department of BioSystems and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Choi, Hyun-Seok (Metabolic and Biomolecular Engineering National Laboratory, Department of Chemical and Biomolecular and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology) ;
  • Kim, Tae-Yong (Metabolic and Biomolecular Engineering National Laboratory, Department of Chemical and Biomolecular and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology) ;
  • Yun, Hong-Seok (Department of BioSystems and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology)
  • Published : 2005.10.31

Abstract

The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

Keywords

References

  1. Lee, S. Y., D.-Y. Lee, and T. Y. Kim (2005) Systems biotechnology for strain improvement. Trends Biotechnol. 23: 349-358 https://doi.org/10.1016/j.tibtech.2005.05.003
  2. Palsson, B. O. (2000) The challenges of in silico biology. Nat. Biotechnol. 18: 1147-1150 https://doi.org/10.1038/81125
  3. Kitano, H. (2002) Systems biology: a brief overview. Science 295: 1662-1664 https://doi.org/10.1126/science.1069492
  4. Nielsen, J. (2003) It is all about metabolic fluxes. J. Bacteriol. 185: 7031-7035 https://doi.org/10.1128/JB.185.24.7031-7035.2003
  5. Lee, S. Y. and E. T. Papoutsakis (1999) Metabolic Engineering. pp. 13-55. Marcel Dekker, NY, USA
  6. Patil, K. R., M. Akesson, and J. Nielsen (2004) Use of genome- scale microbial models for metabolic engineering. Curr. Opin. Biotechnol. 15: 64-66 https://doi.org/10.1016/j.copbio.2003.11.003
  7. Stephanopoulos, G. (2004) Exploiting biological complexity for strain improvement through systems biology. Nat. Biotechnol. 22: 1261-1267 https://doi.org/10.1038/nbt1016
  8. Lee, D.-Y., H. Yun, S. Y. Lee, and S. Park (2003) Meta-FluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 19: 2144-2146 https://doi.org/10.1093/bioinformatics/btg271
  9. Ishii, N., M. Robert, Y. Nakayama, A. Kanai, and M. Tomita (2004) Toward large-scale modeling of the microbial cell for computer simulation. J. Biotechnol. 113: 281-294 https://doi.org/10.1016/j.jbiotec.2004.04.038
  10. Wiechert, W. (2002) Modeling and simulation: tools for metabolic engineering. J. Biotechnol. 94: 37-63 https://doi.org/10.1016/S0168-1656(01)00418-7
  11. Kierzek, A. M. (2002) STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18: 470-481 https://doi.org/10.1093/bioinformatics/18.3.470
  12. Chassagnole, C., N. Noisommit-Rizzi, J. W. Schmid, K. Mauch, and M. Reuss (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol. Bioeng. 79: 53-73 https://doi.org/10.1002/bit.10288
  13. Covert, M. W., E. M. Knight, M. J. Herrgard, and B. O. Palsson (2004) Integrating high-throuhput and computational data elucidate bacterical networks. Nature 429: 92-96 https://doi.org/10.1038/nature02456
  14. Papin, J. A., J. Stelling, N. D. Price, S. Klamt, S. Schuster, and B. O. Palsson (2004) Comparison of network-based pathway analysis methods. Trends Biotechnol. 22: 400-405 https://doi.org/10.1016/j.tibtech.2004.06.010
  15. Klamt, S. and J. Stelling (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol. 21: 64-69 https://doi.org/10.1016/S0167-7799(02)00034-3
  16. Lee, D.-Y., L. T. Fan, S. Park, S. Y. Lee, S. Shafie, B. Bertok, and F. Friedler (2005) Complementary identification of multiple flux distributions and multiple metabolic pathways. Metab. Eng. 7: 182-200 https://doi.org/10.1016/j.ymben.2005.02.002
  17. Hou, B. K., J. S. Kim, J. H. Jun, D.-Y. Lee, Y. W. Kim, S. Chae, M. Roh, Y.-H. In, and S. Y. Lee (2004) BioSilico: an integrated metabolic database system. Bioinformatics 20: 3270-3272 https://doi.org/10.1093/bioinformatics/bth363
  18. Hucka, M., A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, and H. Kitano, and the rest of the SBML Forum. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19: 524-531 https://doi.org/10.1093/bioinformatics/btg015
  19. Yun, H. S., D.-Y. Lee, J. W. Jeong, S. H. Lee, and S. Y. Lee (2005) MFAML: a standard data structure for representing and exchanging metabolic flux models. Bioinformatics Advance Access published on May 19. doi:10.1093/bioinformatics/bti502
  20. Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil, and P. D. Karp (2005) EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33: D334-337 https://doi.org/10.1093/nar/gki108
  21. Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori (2004) The KEGG resources for deciphering the genome. Nucleic Acids Res. 32: D277-280 https://doi.org/10.1093/nar/gkh063
  22. Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281 https://doi.org/10.1038/nbt1010
  23. Reed, J. L. and B. O. Palsson (2003). Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185: 2692-2699 https://doi.org/10.1128/JB.185.9.2692-2699.2003
  24. Covert, M. W., I. Famili, and B. O. Palsson (2003) Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology$?$ Biotechnol. Bioeng. 84: 763-772 https://doi.org/10.1002/bit.10849
  25. Keasling, J. D. and J. Pramnik (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growthrate dependent biomass composition and mechanistic energy requirements. Biotechnol. Bioeng. 56: 398-421 https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
  26. Reed, J. L., T. D. Vo, C. H. Schilling, and B. O. Palsson (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4: R54 https://doi.org/10.1186/gb-2003-4-9-r54
  27. Forster, J., I. Famili, P. Fu, B. O. Palsson, and J. Nielsen (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13: 244-253 https://doi.org/10.1101/gr.234503
  28. Beard, D. A., S. Liang, and H. Qian (2002) Energy balance for analysis of complex metabolic networks. Biophys. J. 83: 79-86 https://doi.org/10.1016/S0006-3495(02)75150-3
  29. Wiback, S. J., R. Mahadevan, and B. O. Palsson (2004) Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol. Bioeng. 86: 317-331 https://doi.org/10.1002/bit.20011
  30. Covert, M. W., C. H. Schilling, and B. O. Palsson (2001) Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213: 78-88
  31. Schilling, C. H., J. S. Edwards, and B. O. Palsson (1999) Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol. Prog. 15: 288-295 https://doi.org/10.1021/bp9900357
  32. Herragard, M. J., M. W. Covert, and B. O. Palsson (2004) Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15: 70-77 https://doi.org/10.1016/j.copbio.2003.11.002
  33. Varma, A. and B. O. Palsson (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Env. Microbiol. 60: 3724-3731
  34. Christensen, B. and J. Nielsen (1999) Isotopomer analysis using GC-MS. Metab. Eng. 1: 282-290 https://doi.org/10.1006/mben.1999.0117
  35. Fischer, E. and U. Sauer (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270: 880-891 https://doi.org/10.1046/j.1432-1033.2003.03448.x
  36. Hong, S. H., S. J. Park, S. Y. Moon, J. P. Park, and S. Y. Lee (2003) In silico prediction and validation of the importance of Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 83: 854-863 https://doi.org/10.1002/bit.10733
  37. Burgard, A. P. and C. D. Maranas (2001) Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions. Biotechnol. Bioeng. 74: 364-375 https://doi.org/10.1002/bit.1127
  38. Edwards, J. S., R. U. Ibarra, and B. O. Palsson (2001) In silico predictions of Escherichia coli metablic capabilities are consistent with experimental data. Nat. Biotechnol. 19: 125-130 https://doi.org/10.1038/84379
  39. Burgard, A. P., P. Pharkya, and C. D. Maranas (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647-656 https://doi.org/10.1002/bit.10803
  40. Segre, D., D. Vitkup, and G. M. Church (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99: 15112-15117 https://doi.org/10.1073/pnas.232349399
  41. Covert, M. W. and B. O. Palsson (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277: 28058-28064 https://doi.org/10.1074/jbc.M201691200