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Abstract The systems-level analysis of microbes with myriad of heterologous data generated
by omics technologies has been applied to improve our understanding of cellular function and
physiology and consequently to enhance production of various bioproducts. At the heart of this
revolution resides /n silico genome-scale metabolic model. In order to fully exploit the power of
genome-scale model, a systematic approach employing user-friendly software is required. Meta-
bolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify
the flux distribution and validate model-driven hypotheses. Here we describe the development
of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to
metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux
analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to
enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based
flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted
and strategies for strain improvement to be developed from genome-based information on flux
distributions. This integrated software environment promises to enhance our understanding on
metabolic network at a whole organism level and to establish novel strategies for improving the

properties of organisms for various biotechnological applications.
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INTRODUCTION

The advent of high-throughput experimental tech-
niques in the postgenomic era has accelerated the accu-
mulation of vast amounts of data at the genome, tran-
scriptome, proteome, metabolome, and fluxome levels.
Bioinformatic analysis at each omic level has been aimed
at elucidating the cellular functions and physiology of
entire systems [1-4]. Diverse disciplines need to be ap-
plied to reveal the metabolism of microorganisms at sys-
tems level and also to design metabolic pathways for im-
proving strains. One successful approach toward these
goals is construction of genome-scale in silico metabolic
models, followed by metabolic flux analysis to quantify
the steady-state flux values of all metabolic reactions un-
der given genetic and environmental conditions [1,5-8].
Considering that the systems level modeling and simula-
tion of complex metabolic network are not straightfor-

ward to many biotechnologies, it will be invaluable to de-
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velop an integrated software for the efficient construction
and analysis of such models. In this regard, we have de-
veloped MetaFluxNet program package that allows con-
struction of genome-scale metabolic models, and that pro-
vides a better understanding of metabolic network prop-
erties, interpretation of the resulting flux maps under dif-
ferent conditions, and design of various metabolic strate-
gies by means of metabolic flux analysis [5,8]. Here we
describe development of an upgraded MetaFluxNet with
special focus on its new features and its application to
constructing genome-scale models followed by its use in
systems biotechnology.

In Silico Modeling and Simulation of Metabolic Net-
works

Several approaches have been taken for the quantita-
tive in silico modeling and simulation of metabolic sys-
tems [9,10], which can be broadly classified into two
types: kinetics model-based dynamic analysis and static
pseudo-steady state analysis (Fig. 1A and 1B).
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Fig. 1. Modeling metabolic network. A; Example of simple
reaction network on central metabolism. This shows that meta-
bolic network can be defined as a set of mass balance equations
around each metabolite. B; Comparisons of mass balance, char-
acteristics, and results for kinetics model-based dynamic analy-
sis and static pseudo-steady state analysis. Kinetics models are
represented by ordinary differential equations of mass balance
equations, which are often expressed in highly non-linear ki-
netic equations. Static pseudo-steady state analysis is often per-
formed using by matrix operation of stoichiometric matrices
which do not contain any kinetic information. '

Kinetics Model-Based Dynamic Analysis
Microorganisms adopt new states in response to
changes in environmental and genetic conditions. Bio-
logical dynamic analysis can be used to determine how
cells respond to certain perturbations, and what kind of
mechanism can be applied or how it can be expressed
mathematically. A kinetics model-based dynamic system
can be represented as a set of mass-balanced rate equa-
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tions with kinetics expressions that incorporate regulatory
information. Such rate equations are expressed by ordi-
nary differential equations describing the concentrations
of intracellular metabolites. Even when the set of mass-
balanced rate equations is a linear system, the metabolic
kinetics expressions including many parameters and in-
hibitors cause the system to be highly nonlinear. Thus,
diverse and complicated algorithms are required to solve
the differential equations and estimate parameters ad-
justed by in vitro experiments or extracted from available
kinetics databases such as BRENDA [11,12].

The limited information on kinetic mechanisms and
their parameters significantly restricts dynamic analyses.
In addition, the number of known kinetics equations is
too small to analyze the whole-cell system, especially con-
sidering that the entire genome sequences of some mi-
croorganisms are now known. The possibility of inaccu-
rate parameters brings into the question for true reliabil-
ity of the results of dynamic simulations. This has led to
wide adoption of steady-state modeling, which does not
need kinetics information.

Static Pseudo-Steady State Analysis

Assuming a pseudo-steady state, a kinetics model can
be simplified to a static representation. In contrast to dy-
namic approaches, a steady-state model considers the
biochemical network topology and thermodynamic char-
acteristics as time-invariant properties of the metabolic
system. The steady state approaches include extreme
pathway analysis and elementary mode analysis in struc-
tural or topological pathway analysis, and constraints-
based flux analysis [13-15].

Elementary modes are a set of vectors calculated from
a biochemical reaction network using convex analysis,
which consists of non-decomposable reactions, while ex-
treme pathways are a set of convex vectors from a
stoichiometric matrix, and are an independent subset of
the elementary modes. They can be used to calculate the
product yields and minimal reaction sets, evaluate path-
way redundancy, and determine correlated reaction sets.
Flux balance analysis with constraints can be used to de-
termine the intracellular fluxes under certain measured
values based on a stoichiometric matrix. Multiple flux
distributions and multiple metabolic pathways have been
applied to determine the adaptability and robustness of
complex cellular networks using linear programming (LP)
and p-graph theory in structural pathway analysis [16].

Integrated Software Environment for Systems-Level
Aanaysis of Metabolic Networks

Metabolic flux analysis is now widely employed in sys-
tems biotechnology and used by researchers with diverse
backgrounds, and hence a user-friendly computer pro-
gram for quantitatively analyzing metabolic fluxes is
needed for those researchers who are less familiar with
the underlying computational methods. To this end, we
have developed the software package MetaFluxNet, which
allows metabolic flux analysis. In particular, various con-
straints ranging from thermodynamic and mass con-



Biotechnol, Bioprocess Eng. 2005, Vol. 10, No. 5

> MetalogBet - Escheatii voli
Fie Model Hlus bnalysic  Visuslizafion  About
) P =

Bo=swh s 04
T
{ eist 1
L e
RS

i e e

L 3 sE T

etarey
oA
| imioam - B

B o> s B

MetaFianet"“ 1.8

Samy Yop Lee, Sunwon Park, Dong Yup Lee
and HomySeck Yun

0 collaboration with PSL, KAISY
P s bt g i

MBEL, KAIST
bkt an iy

ooz

o Matabollc & Biomolscular Engineesing National Research Laboratory

Conyrght 20622005 4K cights rezerved.

Fig. 2. Overview of MetaFluxNet version 1.8 (available at
http://mbel.kaist.ac.kr/mfn). MetaFluxNet package is devel-
oped for metabolic flux analysis of local and genome-scale
metabolic network models and built on Microsoft .NET envi-
ronment with C#.

straints to externally measured and user defined con-
straints can be easily incorporated into the systems to
carry out so called constraints-based flux analysis [2,14].

MetaFluxNet

MetaFluxNet (version 1.8; http://mbel kaist.ac.kr/mfn)
is designed to simulate and manage data on metabolic
reaction networks and quantitatively analyze metabolic
fluxes in an interactive and customizable manner (Fig. 2)
[8]. Users can interpret and examine metabolic behavior
and changes in response to genetic and/or environmental
modifications. Consequently, quantitative in silico simula-
tions of metabolic pathways can be used to understand
the metabolic status and to design metabolic engineering
- strategies. The main features of MetaFluxNet include a
customized model-construction environment, an interface
for interacting with internet-based databases (BioSilico:
http://biosilico.org) [17], a user-friendly interface for
constraints-based flux analysis, comparative flux analysis
of different strains under varying environmental condi-
tions, several types of numerical solver, systems biology
markup language (SBML) [18] supporting for commu-
nicating with other systems-biology platforms, an XML-
based metabolic flux analysis markup language (MFAML)
supporting for the formal representation of metabolic flux
models, and an automated method for the creation of
metabolic pathways [19]. Thus, MetaFluxNet enables the
efficient construction and analysis of genome-scale as
well as local metabolic networks.

Construction of Metabolic Network Models

Constraints-based flux analysis requires genome-scale
models composed of metabolic reactions that are avail-
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Fig. 3. Feature of MetaFluxNet. A; Metabolite List Panel. Me-
tabolite list panel consists of two windows: metabolite list and
metabolite information. Each metabolite is recorded with its
name, type and synonyms, and all metabolites are added to the
metabolite list. Users add all metabolites as nodes for metabolic
networks. For example, ‘pyr’ on Metabolite List stands for py-
ruvate as an intermediate, which is involved in 52 reactions
linked. When metabolites are known as extracellular metabolites,
users select ‘External’ instead of ‘Intermediate’. Here our group
has 805 metabolites for E. coli. B; Reaction Information Panel.
Reaction Information contains all information about enzymatic
reactions such as reactants and products, EC number, and reac-
tion reversibility. User can select proper reactants and products
with their stoichiometric coefficients from already constructed
Metabolite List by clicking arrow buttons. That regenerates
stoichiometric matrix for metabolic flux analysis. GLCpts, for
example, stands for glucose transport reaction by irreversible
phosphotranferase system.

able from biochemical textbooks and public databases
[20,21]. The stoichiometric matrix of the models can be
constructed from full genome sequences on the basis of
physicochemical constraints representing mass conserva-
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Fig. 4. Metabolic Flux Analysis Panel. After the system analysis
is performed, the system can be identified through determinacy
and redundancy. Because not enough measured data are avail-
able for the constraints-based analysis, the characteristics of
most of genome-scale model is the underdetermined system
which can be calculated by linear programming optimization.
Optimal fluxes can be calculated by maximizing the objective
function such as cellular growth (highlighted line). Finally, the
calculated fluxes can be listed in solution column of reaction tab
and analyzed further through MetaFluxNet-Visualization Panel
and comparative metabolic flux analysis.

tion and charge balances of the reactants and products

that have negative and positive values, respectively.
MetaFluxNet provides a user-friendly interface for

constructing such a metabolic network from a myriad of

genome data through reaction and metabolite panels (Fig.

3A and 3B) [22]. Three integrated approaches for con-
structing a genome-scale model are available in Meta-
FluxNet: (1) adding reactions directly from original
sources, (2) importing metabolic models in SBML for-
mats, and (3) selecting reactions from searches of the
name of a reaction or enzyme on the Database Query
panel. The first approach-involving manual addition from
diverse sources-can be tedious, but it can be used to
guarantee the proper connections among metabolites.
The second approach is applied to small metabolic net-
works because of the easy construction and modification.
However, there is the possibility that metabolic models in
different formats will not be applicable to metabolic flux
analysis. This is a major the reason why we developed
MFAML and incorporated it into MetaFluxNet (see be-
low). The third approach is widely used because several
full genome sequences have been elucidated, and it is
possible to construct large-scale genome models from
open public or in-house databases. Additional informa-
tion such as gene names, EC number, or isozyme and
multienzyme complexes allows the system to be expanded
and analyzed further. The linkability of MetaFluxNet to
the BioSilico DB reduces the effort required to compare
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Fig. 5. Concept of constraints-based flux analysis. The number
of feasible solutions is reduced by mass and charge conservation,
thermodynamic capacity, measured flux data from external
measurements or isotopomer analysis, and regulatory mecha-
nism obtained from omics technologies.

the names of metabolites and reactions by providing the
ability to systematically compare those from heterogene-
ous metabolic databases including LIGAND, ENZYME,
EcoCyc, and MetaCyc [20,21].

Analysis of Metabolic Network Models

Constraints-Based Flux Analysis

The constraints-based flux analysis can be implemented
using linear programming (LP) on the basis of mass bal-
ance and stoichiometric equations constrained in a user
defined manner, thus yielding internal flux distributions
(Fig. 4) [23,24]. This LP-based approach has been ap-
plied to genome-scale microbial models including FEs-
cherichia coli K-12, Saccharomyces cerevisiae and Mann-
heimia succiniciproducens [22,25-27].

The flux solution space can be reduced further on the
basis of thermodynamic capacity in an energy-balance
model incorporating the second law of thermodynamics
and chemical potential differences, which is analogous to
Kirchhoff’s current and voltage laws for electric networks
[28,29]. Regulatory constraints under several conditions
and known regulatory mechanisms can further reduce the
solution space [30]. However, constraints-based flux
models have several limitations, including a lack of con-
sidering regulatory mechanisms, the existence of sub-
optimal subspaces, and different optimal solutions due to
the inherent formulation and algorithmic procedures.
These limitations can be partially solved by developing
better genome-scale network model, providing internal
flux values or flux split rations at the branch points, and
by incorporating regulatory mechanisms deciphered by
various omics tools. For example, high-throughput omics
data including transcriptome, proteome and metabolome
data can provide useful constraints for flux analysis of a
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Fig. 6. Comparative flux analysis. Results of calculated fluxes
under various conditions can be easily and directly compared.
Flux-profiles view can help better understanding of metabolic
flux analysis. The example shown is the comparison of meta-
bolic fluxes calculated under aerobic and anaerobic conditions.

genome-scale model, thereby potentially leading to a sys-
tems-level understanding of metabolic networks, as illus-
trated in Fig. 5 [13,31,32].

Comparative Flux Analysis

MetaFluxNet provides comparative flux analysis in one
window where specific measurements from fermentation
data [33] or isotopomer data [34,35] and results of flux
analyses under genetically and/or environmentally per-
turbed conditions can be compared (Fig. 6). For better
understanding of comparative analysis, flux-profiles can
be visualized by the use of lines, bars, and points within a
Java platform. The thickness of lines and the size of flux
name boxes are proportionally rescaled to the calculated
flux values for easy understanding of local and global
metabolic characteristics of the genome-scale metabolic
network.

Representation and Exchange of Metabolic Network
Models

Currently the SBML is available for representing sev-
eral standard data structures for the dynamic simulation
of a kinetics model. However, it does not provide a struc-
ture for storing data from a steady-state analysis (e.g.,
constraints-based flux analysis). Thus, MFAML was de-
veloped for allowing the exchange of metabolic models,
since it provides standard structures for steady-state flux
analysis. MetaFluxNet adopted MFAML to allow efficient
comparison of steady-state flux analysis models, and is
thus useful for studying genome-scale models built on
MetaFluxNet and for calculating metabolic fluxes under
diverse constraints and conditions such as measured in-
ternal or external fluxes, and environmental and genetic
modifications (Fig. 7).

MetaFluxNet can transform metabolic models into

429

L Mo | Comparative ] LP S0LVE ] CRUEXLO | 8 | MaTLag | Gans Tipo | s AN Y

CE CE)

Fig. 7. Export Dialog. MetaFluxNet allows the export of meta-
bolic models to various modeling formats including LP SOLVE,
CPLEX LP, MPS, MATLAB, GAMS, LINDO, SBML and
MFAML for efficient metabolic model analysis. Especially,
MetaFluxNet also provides the standard structures for meta-
bolic flux analysis through MFAML.

various modeling formats for LP standards such as a
mathematical programming system and AMPL (a model-
ing language for mathematical programming; http://www.
ampl.com), and applications that support LP, such as
MATLAB (http://www.mathworks.com) and GAMS (gen-
eral algebraic modeling system; http://www.gams. com).
Thus, MetaFluxNet can provide constraints-based analy-
sis models in different formats to allow comparisons of
the results of flux analyses using different solvers.

Modeling and analysis of Genome-Scale Microbial
Models

Metabolic flux analysis using MetaFluxNet allows an
extensive and quantitative understanding of the metabolic
characteristic of various microorganisms. Also, Meta-
FluxNet can be useful for constructing genome-scale
models to aid the development of strategies for improving
metabolically engineered strains. In the following, the
current status of in silico model and its use in metabolic
flux analysis are described. ‘

E. coli is one of the best characterized microorganisms,
in terms of its physiology, the function of its genes and its
regulation. Constraints-based flux analyses have been
successfully carried out using the genome-scale in silico
metabolic network models of E. coli over several years
[23] and widely applied to the prediction of cellular be-
haviors and the engineering of metabolically improved
strains [36,37]. The iJR904 model developed by Pals-
son’s group consists of 931 reactions involving 625 me-
tabolites in which the elements and charge balances have
been considered for a pH of 7.2 and by including water



430

and protons. Network gap analysis was used when miss-
ing links were found in metabolic pathways. Genes-to-
proteins-to-reactions associations were used to under-
stand the relationships among the genes and the reactions
underlying cellular physiology [26]. The iJR904 model
has been successfully applied in many recent studies: in-
tegrating high-throughput and computational data to
bacterial networks and metabolic gene-deletion strains of
E. coli for prediction of growth phenotypes [38-40], and
incorporating regulatory mechanisms under particular
conditions through a Boolean algorithm to reduce feasi-
ble solution spaces [41].

Similarly, we developed the EcCoOMBEL979 model com-
prising 979 reactions involving 814 metabolites. This E.
coli model was constructed in MetaFluxNet to investigate
the strategies for enhanced succinic acid production. For
understanding E. coli metabolism at the systems level,
MetaFluxNet can simulate the effects of changes in the
desired products and biomass production rate by un-
checking certain reaction boxes, so as to elucidate the
appropriate combinations of gene knockouts for improv-
ing strains. When the data from transcriptome and pro-
teome experiments indicate clearly that genes are not ex-
pressed, at least they can be used as simple on-off con-
straints.

CONCLUSION

In the postgenome era, improving our understanding
on global cellular function and phenotypes is crucial to
improving productivity through omics technologies and
metabolic engineering. Metabolic fluxes can be consid-
ered as the final output of combined cellular regulation
and phenotypes under particular conditions [1,22]. Ana-
lyzing metabolic fluxes requires genome-scale models
based on public or in-house metabolic databases. Since
the calculated fluxes exist at discrete points on the feasi-
ble solution space, constraints-based flux analysis can
provide more realistic solutions with reasonable con-
straints such as mass and charge conservation, thermo-
dynamics, measured fluxes, and regulatory mechanisms
obtained through diverse omics technologies [24]. To
assist constraints-based analysis, MetaFluxNet furnishes
several user-friendly interfaces for easy connection to the
BioSilico database and calculations for metabolic fluxes.
Graphic visualization of comparative fluxes allows easy
interpretation of the results. Also, several unique features
such as flexible data exchange in various formats and
provision of various LP solvers should make MetaFlux-
Net a versatile program package for metabolic flux analy-
sis at local- and/or genome-scale. Taken together, Meta-
FluxNet will help understand global metabolic character-
istics and develop strategies for metabolic engineering.
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