• Title/Summary/Keyword: viscosity coefficient

Search Result 337, Processing Time 0.028 seconds

Frictional characteristics of stainless steel lubricated with pressurized high temperature water (고온/고압 하에서 물로 윤활되는 스테인레스 강의 마찰 특성)

  • 이재선;김은현;김지호;김종인
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.96-99
    • /
    • 2001
  • The fatigue life of support bearings is one of the most critical factors for the performance of a control rod driving mechanism. They are operated at high temperature and high pressure and especially lubricated with dramatically low viscosity water. The support bearing is made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. Friction and wear characteristics of this material operating under severe lubrication condition is not well known yet, although it is expected to be changed with respect to temperature and boundary pressure. So the friction characteristics are investigated in sliding conditions using the reciprocating tribometer which can simulate the operating conditions. Highly purified water is used as lubricant, and the water is heated up and pressurized. Friction farce on the reciprocating specimens is monitored by the load cells. The results of the experiments are presented in this paper.

  • PDF

Self-Diffusion of THO within Tactic Poly(2-hydroxyethyl methacrylate) Membranes

  • Kim, Hye-Kyeong;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.128-132
    • /
    • 1983
  • The self-diffusion experiment of water was performed across two series of tactic poly(2-hydroxyethyl methacrylate), P(HEMA) membranes prepared by crosslinking with various amount of hexamethylene diisocyanate (HMDIC). The tagging material was tritium hydroxide (THO) and the efflux of THO was counted on a Liquid Scintillation Counter. The transport data of THO show that the permeability decreases as the amount of HMDIC increased from 2.5 to 10 mole % and the self-diffusions coefficient shows a parallel trend with it. The diffusivity data was discussed in terms of the change of water structural orderliness within membranes. Using the relation between viscosities and diffusivities derived from Eyring's absolute rate theory, the corresponding viscosities of water within two series of tactic P(HEMA) membranes were obtained. From this, it is seen that the viscosity of water within tactic P(HEMA) membranes may have the same values with those of supercooling water whose temperature ranges from -28 to -$36^{\circ}C.$.

ASSESSMENT OF THE SAFETY OF ULCHIN NUCLEAR POWER PLANT IN THE EVENT OF TSUNAMI USING PARAMETRIC STUDY

  • Kim, Ji-Young;Kang, Keum-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.175-186
    • /
    • 2011
  • Previous evaluations of the safety of the Ulchin Nuclear Power Plant in the event of a tsunami have the shortcoming of uncertainty of the tsunami sources. To address this uncertainty, maximum and minimum wave heights at the intake of Ulchin NPP have been estimated through a parametric study, and then assessment of the safety margin for the intake has been carried out. From the simulation results for the Ulchin NPP site, it can be seen that the coefficient of eddy viscosity considerably affects wave height at the inside of the breakwater. In addition, assessment of the safety margin shows that almost all of the intake water pumps have a safety margin over 2 m, and Ulchin NPP site seems to be safe in the event of a tsunami according to this parametric study, although parts of the CWPs rarely have a margin for the minimum wave height.

Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Water

  • Song Hi Lee;Gyeong Keun Moon;Sang Gu Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.315-322
    • /
    • 1991
  • In a recent $paper^1$ we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data is quite good. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be within approximately ${\pm}$30-40% error bars, which makes it possible to apply the NEMD technique to other molecular liquids.

Designing a nanocrystal-based temperature and strain multi-sensor with one-step inkjet printing

  • Bang, Junsung;Ahn, Junhyuk;Oh, Soong Ju
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.218-222
    • /
    • 2021
  • Wearable multi-sensors based on nanocrystals have attracted significant attention, and studies on patterning technology to implement such multi-sensors are underway. Conventional patterning processes may affect material properties based on high temperatures and harsh chemical conditions. In this study, we developed an inkjet printing technique that can overcome these drawbacks through the application of patterning processes at room temperature and atmospheric pressure. Nanocrystal-based ink is used to adjust properties efficiently. Additionally, the viscosity and surface tension of the solvents are investigated and optimized to increase patterning performance. In the patterning process, the electrical, electrothermal, and electromechanical properties of the nanocrystal pattern are controlled by the ligand exchange process. Experimental results demonstrate that a multi-sensor with a temperature coefficient of resistance of 3.82 × 10-3 K-1 and gauge factor of 30.6 can be successfully fabricated using one-step inkjet printing.

Synthesis and characterization of polyimides for FPC applications

  • Yeon, J.H.;Bae, Y.U.;Yoon, T.H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.227-227
    • /
    • 2006
  • It was attempted to synthesize polyimides from PPMDA and 3FPPMDA with mDAPPO/pPDA in order to afford CTE of 17ppm and adhesion property of 80g/mm, besides high Tg (>$300^{\circ}C$), good thermal stability (>$500^{\circ}C$), low water absorption and good solubility. The polyimides were prepared via a conventional two-step process; preparation of poly(amic-acid), followed by solution imidization by refluxing in NMP with o-DCB and the molar ratio of mDAPPO/pPDA was varied. The polyimides were characterized by FT-IR, NMR, DSC and TGA. In addition, intrinsic viscosity, solubility and coefficient of thermal expansion (CTE) were also measured.

  • PDF

Uncertainty Quantification of Thermophysical Property Measurement in Space and on Earth: A Study of Liquid Platinum Using Electrostatic Levitation

  • Jannatun Nawer;Takehiko Ishikawa;Hirohisa Oda;Chihiro Koyama;Douglas M. Matson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.93-100
    • /
    • 2023
  • A study of uncertainty analysis was conducted on four key thermophysical properties of molten Platinum using a noncontacting levitation technique. More specifically, this work demonstrates a detailed reporting of the uncertainties associated with the density, volumetric thermal expansion coefficient, surface tension and viscosity measurements at higher temperatures for a widely used refractory metal, Platinum using electrostatic levitation (ESL). The microgravity experiments were conducted using JAXA's Electrostatic Levitation Furnace (ELF) facility on the International Space Station and the terrestrial experiments were conducted using NASA's Marshal Space Flight Center's ESL facility. The performance of these two facilities were then quantified based on the measurement precision and accuracy using the metrological International Standards Organization's Guide to the Expression of Uncertainty Measurement (GUM) principles.

Laser surface cleaning of simulated radioactive contaminants in various technological environments

  • Maxim Cheban;Serafima Filatova;Yaroslav Kravchenko;Konstantin Scherbakov;Dmitry Mamonov;Sergey Klimentov;Maxim Savinov;Maxim Chichkov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2775-2780
    • /
    • 2024
  • Special methods for cleaning surfaces of stainless steel with a coating simulating radioactive contamination have been developed and studied. The removal of simulated surface contamination was performed using lasers in the micron spectral range with pulse durations of 8 ns and 270 fs. Optimal cleaning modes were determined for gas and liquid environments, achieving surface cleaning coefficient of over 90% in a single pass. A correlation between the degree of cleaning in liquids and the viscosity of the environment was discovered.

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Thermal Influence on Hydraulic Conductivity in Compacted Bentonite: Predictive Modeling Based on the Dry Density-Hydraulic Conductivity Relationship

  • Gi-Jun Lee;Seok Yoon;Won-Jin Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 2024
  • Hydraulic conductivity is a critical design parameter for buffers in high-level radioactive waste repositories. Most employed prediction models for hydraulic conductivity are limited to various types of bentonites, the main material of the buffer, and the associated temperature conditions. This study proposes the utilization of a novel integrated prediction model. The model is derived through theoretical and regression analyses and is applied to all types of compacted bentonites when the relationship between hydraulic conductivity and dry density for each compacted bentonite is known. The proposed model incorporates parameters such as permeability ratio, dynamic viscosity, and temperature coefficient to enable accurate prediction of hydraulic conductivity with temperature. Based on the results obtained, the values are in good agreement with the measured values for the selected bentonites, demonstrating the effectiveness of the proposed model. These results contribute to the analysis of the hydraulic behavior of the buffer with temperature during periods of high-level radioactive waste deposition.