DOI QR코드

DOI QR Code

Uncertainty Quantification of Thermophysical Property Measurement in Space and on Earth: A Study of Liquid Platinum Using Electrostatic Levitation

  • Jannatun Nawer (Department of Mechanical Engineering, Tufts University) ;
  • Takehiko Ishikawa (Institute of Space and Astronautical Science, JAXA) ;
  • Hirohisa Oda (Human Spaceflight Technology, JAXA) ;
  • Chihiro Koyama (Human Spaceflight Technology, JAXA) ;
  • Douglas M. Matson (Department of Mechanical Engineering, Tufts University)
  • Received : 2023.03.22
  • Accepted : 2023.06.29
  • Published : 2023.09.15

Abstract

A study of uncertainty analysis was conducted on four key thermophysical properties of molten Platinum using a noncontacting levitation technique. More specifically, this work demonstrates a detailed reporting of the uncertainties associated with the density, volumetric thermal expansion coefficient, surface tension and viscosity measurements at higher temperatures for a widely used refractory metal, Platinum using electrostatic levitation (ESL). The microgravity experiments were conducted using JAXA's Electrostatic Levitation Furnace (ELF) facility on the International Space Station and the terrestrial experiments were conducted using NASA's Marshal Space Flight Center's ESL facility. The performance of these two facilities were then quantified based on the measurement precision and accuracy using the metrological International Standards Organization's Guide to the Expression of Uncertainty Measurement (GUM) principles.

Keywords

Acknowledgement

This work has been funded by NASA under the grants NNX17AH41G, 80NSSC23K0573 and 80NSSC19K0256. The authors would like to acknowledge the support of Michael P. SanSoucie, Brandon Philips, Glenn Fountain, and Trudy Allen from the NASA MSFC ESL facility and JAXA Tsukuba Space Centre team members through access to the ISSELF facility. The authors also acknowledge collaborative support of Matthias Kolbe from Institut für Materialphysik im Weltraum, DLR for surface analysis.

References

  1. Behrends A, Fischer B, Freund D, Volkl R, Lupton D, et al., Platinum base alloys for high temperature space applications, in Materials for Transportation Technology: EUROMAT-vol. 1, ed. Winkler PJ (Wiley-VCH, Weinheim, 2000). 
  2. Bradshaw RC, Schmidt DP, Rogers JR, Kelton KF, Hyers RW, Machine vision for high-precision volume measurement applied to levitated containerless material processing, Rev. Sci. Instrum. 76, 125108 (2005). https://doi.org/10.1063/1.2140490 
  3. Cheng KJ, Capillary oscillations of a drop in an electric field, Phys. Lett. A. 112, 392-396 (1985). https://doi.org/10.1016/0375-9601(85)90408-6 
  4. Douady S, Experimental study of the Faraday instability, J. Fluid Mech. 221, 383-409 (1990). https://doi.org/10.1017/S0022112090003603 
  5. Dubinin EL, Vlasov VM, Timofeev AI, Safonov SO, Chegodaev AI, Temperature dependence of the surface tension and density of molten Pt and RH, Izv. Vyss. Uchebn. Saved. Tsvetn. Met. 4, 160-161 (1975). 
  6. Egry I, Physical property measurements of liquid metals at high temperatures under microgravity, Mater. Trans. 45, 3235-3240 (2004). https://doi.org/10.2320/matertrans.45.3235 
  7. Egry I, Lohoefer G, Jacobs G, Surface tension of liquid metals: results from measurements on ground and in space, Phys. Rev. Lett. 75, 4043 (1995). https://doi.org/10.1103/PhysRevLett.75.4043 
  8. Gathers GR, Shaner JW, Hodgson WM, Thermodynamic characterization of liquid metals at high temperature by isobaric expansion measurements, Proceedings of the European Conference on Thermophysical Properties, Dubrovnik, Yugoslavia, 26 Jun 1978. 
  9. Hixson RS, Winkler MA, Thermophysical properties of liquid platinum, Int. J. Thermophys. 14, 409-416 (1993). https://doi.org/10.1007/BF00566040 
  10. Ishikawa T, Paradis PF, Koike N, Non-contact thermophysical property measurements of liquid and supercooled platinum, Jpn. J. Appl. Phys. 45, 1719 (2006). https://doi.org/10.1143/JJAP.45.1719 
  11. Ishikawa T, Paradis PF, Okada JT, Watanabe Y, Viscosity measurements of molten refractory metals using an electrostatic levitator, Meas. Sci. Technol. 23, 025305 (2012). https://doi.org/10.1088/0957-0233/23/2/025305 
  12. Knapton AG, Ensuring the most advantageous use of platinum, Platin. Met. Rev. 23, 2-13 (1979). 
  13. Matson DM, Watanabe M, Pottlacher G, Lee GW, Fecht HJ, Thermophysical property measurement: a call to action, Int. J. Microgravity Sci. Appl. 33, 330304 (2016). https://doi.org/10.15011/ijmsa.33.330304 
  14. Nawer J, Gosse S, Matson DM, Tracking evaporation during levitation processing of nickel-based superalloys on the ISS, J. Miner. Met. Mater. Soc. 72, 3132-3139 (2020b). https://doi.org/10.1007/s11837-020-04256-8 
  15. Nawer J, Ishikawa T, Oda H, Koyama C, Saruwatari H, et al., A quantitative comparison of thermophysical property measurement of CMSX-4® Plus (SLS) in microgravity and terrestrial environments, High Temp. High Press. 52, 323-339 (2023b). https://doi.org/10.32908/hthp.v52.1407 
  16. Nawer J, Ishikawa T, Oda H, Saruwatari H, Koyama C, et al., Uncertainty analysis and performance evaluation of thermophysical property measurement of liquid Au in microgravity, Nat. Partn. J. Microgravity. 9, 38 (2023a). https://doi.org/10.1038/s41526-023-00277-0 
  17. Nawer J, Matson DM, Quantifying facility performance during thermophysical property measurement of liquid Zr using electrostatic levitation, High Temp. High Press. 52, 123-138 (2023). https://doi.org/10.32908/hthp.v52.1315 
  18. Nawer J, Xiao X, SanSoucie MP, Matson DM, Effect of mass evaporation on measurement of liquid density of Ni-based super alloys using ground and space levitation techniques, High Temp. High Press. 49, 17-29 (2020a). https://doi.org/10.32908/hthp.v49.839 
  19. Paradis PF, Ishikawa T, Okada JT, Thermophysical properties of platinum group metals in their liquid undercooled and superheated phases, Johns. Matthey Technol. Rev. 58, 124-136 (2014). https://doi.org/10.1595/147106714X682355 
  20. Sachtler WMH, Dorgelo GJH, Holscher AA, The work function of gold, Surf. Sci. 5, 221-229 (1966). https://doi.org/10.1016/0039-6028(66)90083-5 
  21. Tamaru H, Koyama C, Saruwatari H, Nakamura Y, Ishikawa T, et al., Status of the ELF in the ISS-KIBO, Microgravity Sci. Technol. 30, 643-651 (2018). https://doi.org/10.1007/s12217-018-9631-8 
  22. Watanabe M, Adachi M, Uchikoshi M, Fukuyama H, Densities of Pt-X (X: Fe, Co, Ni and Cu) binary melts and thermodynamic correlations, Fluid Phase Equilib. 515, 112596 (2020). https://doi.org/10.1016/j.fluid.2020.112596 
  23. Wilthan B, Cagran C, Brunner C, Pottlacher G, Thermophysical properties of solid and liquid platinum, Thermochim. Acta. 415, 47-54 (2004). https://doi.org/10.1016/j.tca.2003.06.003 
  24. Working Group 1 of the Joint Committee for Guides in Metrology [JCGM/WG1], Evaluation of measurement data: guide to the experession of uncertainty measurements, JCGM, JCGM 100:2008 (2008). 
  25. Zhuchenko AA, Dubinin EL, Timofeev AI, La viscosite du platine liquid et de ses alliages avec l'etain, Safonov SO, Izv. Vyss. Uchebn. Saved. Tsvetn. Met. 4, 142-144 (1977).