• Title/Summary/Keyword: platinum

Search Result 1,165, Processing Time 0.023 seconds

Survival Outcomes of Recurrent Epithelial Ovarian Cancer: Experience from a Thailand Northern Tertiary Care Center

  • Jansaka, Natpat;Suprasert, Prapaporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10837-10840
    • /
    • 2015
  • To assess survival outcomes in a retrospective study, recurrent epithelial ovarian cancer patients were divided into three groups according to the platinum free interval as follows: platinum refractory that included the patients with tumor progression during treatment; platinum resistant and platinum sensitive that included the patients with tumor progression less than or more than six months, respectively. Clinical data for tumor progression in epithelial ovarian cancer patients treated at Chiang Mai University Hospital between January, 2006 and December, 2010 were reviewed. Thirty-nine patients were in the platinum refractory group while 27 were in the platinum resistant group and 75 in the platinum sensitive group. The mean age, the parity, the administration of neoadjuvant chemotherapy and the serous type did not significantly different across groups while the mean total number of chemotherapy regimens, the early stage patients, the patients with complete surgery and the surviving patients were significant more frequent in the platinum sensitive group. Regarding subsequent treatment after tumor recurrence, 87.2% underwent chemotherapy. With the median follow up time at 29 months, the median overall survival rates were 20 months, 14 months and 42 months in platinum refractory, platinum resistant and platinum sensitive groups, respectively (p<0.001). In addition, when the platinum sensitive patients developed the next episode of tumor progression, the median progression free interval time was only three to four months. In conclusion, the outcomes for platinum refractory the and platinum resistant groups was poorer than the platinum sensitive group. However, subsequent progression in the platinum sensitive group was also associated with a poor outcome.

Ototoxic Evaluation of Cis-platinum (Cis-Platinum의 이중독증에 관한 임상적 고찰)

  • 홍원표;정명현;오혜경;이경재
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1982.05a
    • /
    • pp.17.1-17
    • /
    • 1982
  • In 1965, Rosenberg reported that platinum compounds not only inhibit growth and cell division of E. coli but also has anti-tumor activity. Since then, through animal and clinical experiments by Welsch(1971), Speer(1972), Rossof(1972), Hill(1974), and Wittes(1975), it was proved that Cis-platinum has excellent supressive effects on malignant tumor, especially on head and neck cancer. Accordingly, Cis-platinum is now widely used, sometimes without any other durg, or sometimes with Bleomycin and Methotrexate etc. Inspite of the strong anticancer effect, the use of Cis-platinum is quite often discouraged because of the reports that Cis-platinum causes auditory impairment at high frequencies above the speech range due to inner ear damage and irreversible change in the renal tubules. Since Kohonen et al(1965), Standnicki et al(1974) reported that Cisplatinum has toxic effects at the basal turn of the cochlea using guinea pig, many studies on ototoxicity after infusion of Cis-platinum have been carried out using animals. But the studies on ototoxicity in human beings can hardly be found except in reports by Piel et al(1974) and Hong et al (1979). So the authors did a study which tried to clarify the ototoxic effect by comparing the hearing level after infusion of Cis-plastinum with the hearing level before infusion of Cis-plastinum in 30 patients who was treated with Cis-platinum and admitted to the dept. of otolaryngology of Yonsei University Hospital during 2 years and a half from July. 1979 to March. 1982 and the following results were obtained. 1) The results of auditory evaluation, using the pure tone average, hearing loss of 4kHz and 8kHz, Speech Reception Threshold, PB score, SISI showed that the difference of dosage does not change the hearing level after infusion of Cis-platinum and before infusion of Cis-platinum. 2) Cis-platinum had no effect on the hearing level of patients with conductive hearing loss, or with sensorineural hearing loss, as well as with normal hearing level. 3) The infusion of Cis-platinum did not cause any change in creatinine clearance, creatinine, uric acid, but only one case showed that Cis-platinum caused severe nephrotoxicity. 4) The infusion of Cis-plastinum did not cause any change in hemoglobin, leukocyte count, platelet count and there was no correlation with the amount of infusion. 5) To see the side effect of hydration practiced with the infusion of Cis-platinum, the electrolytes, particularly the K level in the serum was measured. But the results did not show any change. 6) Judging from the results of this study mentioned above, ototoxicity caused by infusion of Cis-platinum can be prevented by sufficient hydration. Also the results might say that the appropriate method of infusion of Cis-platinum might be effective in the patients with head and neck cancer who had sensorineural hearing loss for whom the infusion of Cis-platinum has been absolutely cotraindicated.

  • PDF

PLASMA THIN FILMS PREVENTING CHLORIDE LONS FROM INTERFERING WITH THE NERNSTIAN pH-RESPONSE OF PLATINUM ELECTRODE SURFACE

  • Yajima, Tastuhiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.678-682
    • /
    • 1996
  • The plasma-deposited polymer thin films at platinum surface were investigated as materials blocking access of chloride ions to the platinum surface and preventing their interference with the Nernstian responce of platinum. In the presence of chloride ions, the pH response of a naked platinum was remarkably affected. By comparison of pH responses of coated and uncoated platinum-wire electrodes immersed in solutions with chloride ions, it was found that toluene and ethylbenzene plasma films could improve the pH response of platinum. The pH response of coated platinum electrodes may be explained by the ability of protons, by virtue of their small size, to move through the polymer matrix to the platinum surface.

  • PDF

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF

Annealing Effects on Concentration Profiles of Deep Energy Levels in Platinum-diffused Silicon (백금 확산 실리콘의 깊은 에너지 준위의 농도분포에 대한 열처리효과)

  • Kwon, Young-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • The concentration profiles of deep energy levels($E_c$ -0.23e V, $E_v$+0.36e V and $E_c$ -0.23e V) in platinum-diffused silicon have generally a sharp gradient in the vicinity of the surface of the silicon wafer. In this work two efficient methods are proposed to obtain the uniform concentration profiles throughout the silicon wafer. One is that the platinum diffusion is carried out at $1000^{\circ}C$ for 1h in oxygen atmosphere. In this case the values of obtained uniform concentration, $1{\times}10^{15}cm^{-3}$ for the $E_c$ -0.23e V level, and 1{\times}10^{14}cm^{-3}$ for the $E_c$ -0.52e V level, are very restricted, respectively. The other is two-step annealing process. The platinum diffusion is carried out at $850{\sim}1100^{\circ}C$ in a nitrogen ambient for 1h and then the annealing is performed at $1000^{\circ}C$ in oxygen ambient after removing platinum-source from the platinum diffused samples. The advantage of this method is that the uniform concentration of these levels required power devices can be controlled by setting the desired temperatures when the platinum diffusion is carried out in nitrogen ambient.

A Study on the Properties of Platinum Dry Etching using the MICP (MICP를 이용한 Platinum 건식 식각 특성에 관한 연구)

  • Kim, Jin-Sung;Kim, Jung-Hun;Kim, Youn-Taeg;Joo, Jung-Hoon;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.279-281
    • /
    • 1997
  • The properties of Platinum dry etching were investigated in MICP(Magnetized Inductively Coupled Plasma). The problem with Platinum etching is the redeposition of sputtered Platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned Platinum structure produce feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape.[1] Generally, $Cl_2$ plasma is used for the fence-free etching.[1][2][3] The main object of this study was to investigate a new process technology for the fence-free Pt etching. Platinum was etched with Ar plasma at the cryogenic temperature and with Ar/$SF_6$ plasma at room temperature. In cryogenic etching, the height of fence was reduced to 20% at $-190^{\circ}C$ compared with that of room temp., but the etch profile was not fence-free. In Ar/$SF_6$ Plasma, chemical reaction took part in etching process. The trend of properties of Ar/$SF_6$ Plasma etching is similar to that of $Cl_2$ Plasma etching. Fence-free etching was possible, but PR selectivity was very low. A new gas chemistry for fence-free Platinum etching was proposed in this study.

  • PDF

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

Comparison of Adsorption Properties of Adsorbates on Pt(111) and Pt(111)/$\gamma-Al_2O_3$ Surface in the Ethylene Hydrogenation Reaction : MO-Theory

  • 조상준;박상문;박동호;허도성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.733-737
    • /
    • 1998
  • Using an atom superposition and electron delocalization molecular orbital (ASED-MO) method, we have compared adsorption properties of adsorbates on the Pt(Ill) surface with the Pt(lll)/γ-Al203 surface in the ethylene hydrogenation reaction. In two-layer thick model systems, the calculated activation energy of the hydrogenation by the surface platinum hydride is equal to the energy by the hydride over supported platinum/γ-alumina. The transition structure on platinum is very close to the structure on the supported platinum/γ-alumina surface. Hydrogenation by the surface hydride on platinum can take place easily because the activation energy is about 0.5 eV less than hydrogenation by ethylidene. On supported platinum/,y-alumina the activation energy of the hydride mechanism is about 0.61 eV less than that of ethylidene mechanism. In one-layer thick model systems, the activation energy of hydrogenation by ethylidene is about 0.13 eV less than the activation energy of hydride reaction. The calculated activation energy by the hydride over the supported platinum y-alumina is 0. 24 eV higher than the platinum surface. We have found from this result that the catalytic properties of one-layer thick model systems have been influenced by the support but the two-layer thick model systems have not been influenced by the support.

A novel cis/trans-diaminocyclohexane platinum coordination complexes possessing in vitro and in vivo antitumor activity

  • Jung, Jee-Chang;Chang, Sung-Goo;Lee, Kyung-Tae;Park, Young-Soo;Lee, Joo-Han;Lee, Kyou-Heung;Kim, Sang-Lin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.111-111
    • /
    • 1997
  • As part of a drug discovery program to develope more effective platinum-based anticancer drugs, a series of platinum complexes trans-diaminocyclohexane platinum bi sdiphenylphosphino - ethane ( KHPC- 002) cis-diaminocyclohexane platinum bi sdiphenylphosphino - ethane ( KHPC- 006) has been evaluated in vitro against 4 human carcinoma cell lines with those of cisplatin using a tetrazolium-based colorimetric assay (MTT assay). The cell lines were two human bladder carcinoma cell lines, HT-1197 and HT-1376, human colon carcinoma cell line, HCT-116, and prostate cancer cell line DU-145. in vitro cytotoxic potential of each platinum complex was expressed as the cytotoxicity index (Cl, %).

  • PDF