References
- R & D and Innovation Needs for Decommissioning Nuclear Facilities, Nuclear Energy Agency, France, 2014.
- Qian Wang, et al., Laser decontamination for radioactive contaminated metal surface: a review, Nucl. Eng. Technol. 55 (Issue 1) (2023) 12-24. https://doi.org/10.1016/j.net.2022.09.020
- Y.F. Lu, W.D. Song, T.C. Low, Laser cleaning of micro-particles from a solid surface - theory and applications, Mater. Chem. Phys. 54 (N◦ 2) (1998) 181-185. https://doi.org/10.1016/S0254-0584(98)00026-1
- Bin Liu, Xinmin Li, Lijun Song, et al., Chemical decontamination of primary loop Elbow and verification test in nuclear power plantJ, Nucl. Radiochem. 40 (6) (2018) 388-392.
- V.P. Veiko, T.Y. Mutin, V.N. Smirnov, E.A. Shakhno, Laser decontamination of radioactive nuclides polluted surfaces, Laser Phys. 21 (2011) 608-613. https://doi.org/10.1134/S1054660X11050264
- Y. Kameo, M. Nakashima, T. Hirabayashi, New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel, J. Nucl. Sci. Technol. 41 (9) (2004) 919-924. https://doi.org/10.1080/18811248.2004.9715565
- G. Greifzu, T. Kahl, M. Herrmann, et al., Laser-based decontamination of metal surface, Opt Laser. Technol. 117 (2019) 293-298. https://doi.org/10.1016/j.optlastec.2019.04.037
- D. Mamonov, S. Klimentov, S. Derzhavin, Ya Kravchenko, Generation dynamics of coupled pulses from a single active element of the end-pumped solid-state laser: experiment and simulation, Phys. Wave Phenom. 26 (2018) 214-220. https://doi.org/10.3103/S1541308X18030068
- D.J.O. Orzi, et al., Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP), Appl. Phys. A 110 (3) (2012).
- L. Carvalho, et al., Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel, Appl. Surf. Sci. 526 (2020) 146654.
- A. Leontyev, Laser Decontamination and Cleaning of Metal Surfaces: Modelling and Experimental Studies - Universite Paris Sud-Paris XI, 2011.
- L. Carvalho, et al., Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces, EPJ N-Nuclear Sciences & Technologies 3 (2017) 30.
- M.C. Stennett, et al., Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel, J. Nucl. Mater. 432 (2013) 182-188. https://doi.org/10.1016/j.jnucmat.2012.07.038
- Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, IAEA, Vienna, 2008, pp. 24-36.
- W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 2014.
- T. Kerry, Characterisation of Stainless Steel Contamination in Acidic Media, The University of Manchester, United Kingdom, 2018.
- Ya Kravchenko, S. Klimentov, S. Derzhavin D. Mamonov, N. Karpov, A. Mayorov, Optimization of laser cleaning conditions using multimode short-pulse radiation, Opt. Quant. Electron. 52 (2020) 280.
- S.L. Phillips, D.L. Perry, Handbook of Inorganic Compounds Chemical Encyclopedia, CRC Press, Boca Raton, FL, 1995.
- B. Verhaagen, D.F. Rivas, Measuring cavitation and its cleaning effect, Ultrason. Sonochem. 29 (2016) 619-628. https://doi.org/10.1016/j.ultsonch.2015.03.009