DOI QR코드

DOI QR Code

Laser surface cleaning of simulated radioactive contaminants in various technological environments

  • Received : 2023.10.29
  • Accepted : 2024.02.21
  • Published : 2024.07.25

Abstract

Special methods for cleaning surfaces of stainless steel with a coating simulating radioactive contamination have been developed and studied. The removal of simulated surface contamination was performed using lasers in the micron spectral range with pulse durations of 8 ns and 270 fs. Optimal cleaning modes were determined for gas and liquid environments, achieving surface cleaning coefficient of over 90% in a single pass. A correlation between the degree of cleaning in liquids and the viscosity of the environment was discovered.

Keywords

References

  1. R & D and Innovation Needs for Decommissioning Nuclear Facilities, Nuclear Energy Agency, France, 2014.
  2. Qian Wang, et al., Laser decontamination for radioactive contaminated metal surface: a review, Nucl. Eng. Technol. 55 (Issue 1) (2023) 12-24. https://doi.org/10.1016/j.net.2022.09.020
  3. Y.F. Lu, W.D. Song, T.C. Low, Laser cleaning of micro-particles from a solid surface - theory and applications, Mater. Chem. Phys. 54 (N◦ 2) (1998) 181-185. https://doi.org/10.1016/S0254-0584(98)00026-1
  4. Bin Liu, Xinmin Li, Lijun Song, et al., Chemical decontamination of primary loop Elbow and verification test in nuclear power plantJ, Nucl. Radiochem. 40 (6) (2018) 388-392.
  5. V.P. Veiko, T.Y. Mutin, V.N. Smirnov, E.A. Shakhno, Laser decontamination of radioactive nuclides polluted surfaces, Laser Phys. 21 (2011) 608-613. https://doi.org/10.1134/S1054660X11050264
  6. Y. Kameo, M. Nakashima, T. Hirabayashi, New laser decontamination technique for radioactively contaminated metal surfaces using acid-bearing sodium silicate gel, J. Nucl. Sci. Technol. 41 (9) (2004) 919-924. https://doi.org/10.1080/18811248.2004.9715565
  7. G. Greifzu, T. Kahl, M. Herrmann, et al., Laser-based decontamination of metal surface, Opt Laser. Technol. 117 (2019) 293-298. https://doi.org/10.1016/j.optlastec.2019.04.037
  8. D. Mamonov, S. Klimentov, S. Derzhavin, Ya Kravchenko, Generation dynamics of coupled pulses from a single active element of the end-pumped solid-state laser: experiment and simulation, Phys. Wave Phenom. 26 (2018) 214-220. https://doi.org/10.3103/S1541308X18030068
  9. D.J.O. Orzi, et al., Determination of femtosecond ablation thresholds by using laser ablation induced photoacoustics (LAIP), Appl. Phys. A 110 (3) (2012).
  10. L. Carvalho, et al., Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel, Appl. Surf. Sci. 526 (2020) 146654.
  11. A. Leontyev, Laser Decontamination and Cleaning of Metal Surfaces: Modelling and Experimental Studies - Universite Paris Sud-Paris XI, 2011.
  12. L. Carvalho, et al., Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces, EPJ N-Nuclear Sciences & Technologies 3 (2017) 30.
  13. M.C. Stennett, et al., Preparation, characterisation and dissolution of a CeO2 analogue for UO2 nuclear fuel, J. Nucl. Mater. 432 (2013) 182-188. https://doi.org/10.1016/j.jnucmat.2012.07.038
  14. Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, IAEA, Vienna, 2008, pp. 24-36.
  15. W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 2014.
  16. T. Kerry, Characterisation of Stainless Steel Contamination in Acidic Media, The University of Manchester, United Kingdom, 2018.
  17. Ya Kravchenko, S. Klimentov, S. Derzhavin D. Mamonov, N. Karpov, A. Mayorov, Optimization of laser cleaning conditions using multimode short-pulse radiation, Opt. Quant. Electron. 52 (2020) 280.
  18. S.L. Phillips, D.L. Perry, Handbook of Inorganic Compounds Chemical Encyclopedia, CRC Press, Boca Raton, FL, 1995.
  19. B. Verhaagen, D.F. Rivas, Measuring cavitation and its cleaning effect, Ultrason. Sonochem. 29 (2016) 619-628. https://doi.org/10.1016/j.ultsonch.2015.03.009