• Title/Summary/Keyword: viscosity(${\eta}$)

Search Result 100, Processing Time 0.025 seconds

Rheological Properties of Citrus Pectin Solutions (감귤류 펙틴 용액의 리올리지 특성)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.799-806
    • /
    • 1995
  • The steady shear and small amplitude oscillatory dynamic rheological properties of citrus pectin $([\eta]=3.75\;dL/g)$ were characterized for a wide range of pectin concentrations $({\sim}6%)$. The typical power-law flow was observed above 2.0% concentration, and the shear rate dependence of viscosity increased with pectin concentration. The transition from dilute to concentrated regime, determined from the double logarithmic plot of ${\eta_{sp.o}}\;vs\;C[\eta]$, occurred at a critical coil overlap parameter $C^{*}[\eta]\approx4.0$, at which ${\eta_{sp.o}}$ corresponded to approximately 10.0. The slopes of ${\eta_{sp.o}}\;vs\;C[\eta]$, at $C[\eta]\;at\;C[\eta]C^{*}[\eta]$were 1.1 and 4.5, respectively. The steady viscosity $(\eta)$ displayed a good superposition at ${\eta}/{\eta}_o\;vs\;{\gamma}/{\gamma}_{0.8}$ relation with an exception of high concentration (6%), which arised from the significant deviation of flow behavior index (n values of $\eta_{a}=K\gamma^{n-1}$) at high concentration. Dynamic measurements showed that the loss modulus $(G^{\prime\prime})$ was much higher than the storage modulus $(G^\prime)$for all concentrations studied, indicating predominant viscoelastic liquid-like behavior of pectin solutions. The frequency dependence of $G^\prime$ was higher than that of $G^\prime\prime$ at the same concentration, whose trend was more pronounced with decreasing pectin concentration. The shear viscosity $(\eta)$ was almost identical to the complex viscosity $(\eta^{*})$ at low concentration, following the Cox-Merz rule, but they became increasingly different at high concentration.

  • PDF

Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis (고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산)

  • Eom, Hyo-Sang;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.415-423
    • /
    • 2010
  • Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to $C{\simeq}0.14\;g/mL$ in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration $C[{\eta}]$, which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C$[{\eta}]$ >2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C$[{\eta}]$ >2.5.

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Nonbiopolymeric Solutions (I)

  • Jang, Chun-Hag;Kim, Jong-Ryul;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1987
  • Experimental results for viscous flow of poly (${\gamma}$ -methyl L-glutamate) solutions have been published elsewhere. The data of $[{\eta}]^f / [{\eta}]^0$ are expressed by the following equation, $\frac{[{\eta}^f]}{[{\eta}^{\circ}]}=1-\frac{A}{\eta^\circ}{1-\frac{sin^{-1}[{\beta}_2(f/{\eta}_0)\;{e}xp\;(-c_2f^2/{\eta}_0^2kT)]}{{\beta}_2f/{\eta}_0}$ (A1) where $[{\eta}]^f\; and\; [{\eta} ]^0$ are the intrinsic viscosity at shear stress f and zero, respectively, $ A{\equiv}lim\limits_{C{\rightarrow}0}[(1/C)(X_2/{\alpha}_2)({\beta}_2/{\eta}_0)],{\eta}_0$ viscosity of the solvent, ${\beta}_2$ is the relaxation time of flow unit 2, $c_2$ is a constant related to the elasticity of flow unit 2. The theoretical derivation of Eq.(A1) is given in the text. The experimental curves of $[{\eta}]^f / [{\eta}]^0$ vs. log f are compared with the theoretical curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that in the latter case $c_2 = 0.$ The reason for this is explained in the text. The problems related to non-Newtonian flows are discussed.

Relationship between Apparent Viscosity and Line-Spread Test Measurement of Thickened Fruit Juices Prepared with a Xanthan Gum-based Thickener

  • Kim, Sung-Gun;Yoo, Whachun;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.242-245
    • /
    • 2014
  • The flow behaviors of three thickened fruit juices (orange, apple, and grape juice) prepared with a commercial instant xanthan gum (XG)-based thickener that is marketed in Korea were investigated at different thickener concentrations (1.0%, 1.5%, 2.0%, 2.5%, 3.0%, and 3.5%) and setting times (5 and 30 min) using a rheometer and a line-spread measurement method. The flow distance values measured by the line-spread test (LST) were compared with the apparent viscosity (${\eta}_{a,50}$) values measured with a sophisticated computer-controlled rheometer. The ${\eta}_{a,50}$ values of the juices increased as thickener concentration increased, whereas their flow distances decreased. The ${\eta}_{a,50}$ values at the 30-min setting time were much higher than those at the 5-min setting time, indicating that the setting time before serving or consuming thickened juices can affect viscosity values. Plots comparing ${\eta}_{a,50}$ values to LST flow distances revealed strong exponential relationships between the two measures ($R^2$=0.989 and $R^2$=0.987 for the 5- and 30-min setting times, respectively). These results indicate that the LST can be a suitable instrument for evaluating the viscosity of thickened fruit juices prepared with different XG-based thickener concentrations and setting times for the dysphagia diet.

Molecular Dynamics Simulation Studies of Viscosity and Diffusion of n-Alkane Oligomers at High Temperatures

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3909-3913
    • /
    • 2011
  • In this paper we have carried out molecular dynamics simulations (MD) for model systems of liquid n-alkane oligomers ($C_{12}{\sim}C_{80}$) at high temperatures (~2300 K) in a canonical ensemble to calculate viscosity ${\eta}$, self-diffusion constants D, and monomeric friction constant ${\zeta}$. We found that the long chains of these n-alkanes at high temperatures show an abnormality in density and in monomeric friction constant. The behavior of both activation energies, $E_{\eta}$ and $E_D$, and the mass and temperature dependence of ${\eta}$, D, and ${\zeta}$ are discussed.

Rheological Properties of Citrus Pectin Solutions in the Presence of NaCl (감귤류 펙틴의 리올로지 특성에 대한 NaCl 첨가효과)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.870-874
    • /
    • 1999
  • 농후한 점도영역에서 감귤류 펙틴용액에 NaCl을 첨가하였을 때 점도 및 점탄성 변화를 연구하였다. NaCl의 농도가 증가함에 따라 펙틴용액의 점도도 점차 증가하였으며, 1.5 M의 NaCl을 첨가한 경우 점도가 약 3배 증가하였다. NaCl의 첨가에 따른 점도특성의 일반화 곡선으로서 ${\eta}/{\eta}_0$$\dot{\gamma}/\dot{\gamma}_{0.8}$ 관계는 상대적으로 낮은 중첩도를 보였다. Zero-shear viscosity $({\eta}_0)$와 NaCl 농도(C)와는 ${\eta}_0\;{\propto}\;10^{0.32C}$의 관계를 보였으며, 이때 상관계수(R2)는 0.995였다. 한편, NaCl 농도가 증가함에 따라 저장탄성률(G#)과 손실탄성률(G@)이 모두 증가하였다.

  • PDF

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Non-biopolymeric Solutions (II)

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Taik-Yue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.332-335
    • /
    • 1987
  • This paper is a continuation of our previous $paper,^1$ and deals with Eq.(1) (see the text), which was theoretically derived in the $paper,^1$$ [{\eta}]^f\; and\; [{\eta}]^0$ is the intrinsic viscosity at stress f and f = O, respectively. Equation (1) predicts how $[{{\eta}}]^f / [{\eta}]^0$ changes with stress f, relaxation time ${\beta}_2$ of flow unit 2 and a constant $c_2$ related with the elasticity of molecular spring of flow unit 2. In this paper, Eq.(1) is applied to a biopolymer, e.g., poly (${\gamma}$-benzyl L-glutamate), and nonbiopolymers, e.g., polyisobutylene, polystyrene, polydimethylsiloxane and cellulose triacetate. It was found that the $c_2$ factor is zero for non-biopolymers while $c_2{\neq}0$ for biopolymers as found $previously.^1$ Because of the non-Newtonian nature of the solutions, the ratio $[{{\eta}}]^f / [{\eta}]^0$ drops from its unity with increasing f. We found that the smaller the ${\beta}_2,$ the larger the $f_c$ at which the viscosity ratio drops from the unity, vice versa.

Viscosity and Diffusion Constants Calculation of n-Alkanes by Molecular Dynamics Simulations

  • Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1590-1598
    • /
    • 2003
  • In this paper we have presented the results for viscosity and self-diffusion constants of model systems for four liquid n-alkanes ($C_{12}, C_{20}, C_{32}, and C_{44}$) in a canonical ensemble at several temperatures using molecular dynamics (MD) simulations. The small chains of these n-alkanes are clearly $<{R_{ee}}^2>/6<{R_g}^2>>1$, which leads to the conclusion that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime. Calculated viscosity ${\eta}$ and self-diffusion constants D are comparable with experimental results and the temperature dependence of both ${\eta}$ and D is suitably described by the Arrhenius plot. The behavior of both activation energies, $E_{\eta}$ and $E_D$, with increasing chain length indicates that the activation energies approach asymptotic values as n increases to the higher value, which is experimentally observed. Two calculated monomeric friction constants ${\zeta}$ and ${\zeta}_D$ give a correct qualitative trend: decrease with increasing temperature and increase with increasing chain length n. Comparison of the time auto-correlation functions of the end-to-end vector calculated from the Rouse model for n-dodecane ($C_{12}$) at 273 K and for n-tetratetracontane ($C_{44}$) at 473 K with those extracted directly from our MD simulations confirms that the short chain n-alkanes considered in this study are far away from the Rouse regime.

The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids

  • Walters, K.;Tamaddon-Jahromi, H.R.;Webster, M.F.;Tome, M.F.;McKee, S.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences $N_1$ and $N_2$, especially $N_1$, and the extensional viscosity $\eta_E$. In this paper, we shall be mainly interested in 'constant-viscosity' Boger fluids, and, accordingly, we shall limit attention to $N_1$ and $\eta_E$. We shall concentrate on two important flows - axisymmetric contraction flow and "splashing" (particularly that which arises when a liquid drop falls onto the tree surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high $\eta_E$ can retard the flow, whereas high $N_1$ can have the opposite effect. In the splashing experiment, high $\eta_E$ can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

A Study of the Viscosity of Some Electrolytic Solutions and Its Concentration Function (電解質溶液의 粘度係數의 測定과 濃度關係에 對한 考察)

  • Sakong, Yull;Hwang, Jung-Eui
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 1964
  • The viscosities of strong electrolytic solutions, such as KCl, KI and NaI have been measured over a fairy wide range of concentration variation (from 0.00002 to 3.7M). It was hoped that a study of the data in the light of modern theories on solution might reveal new relation between viscosity and surface tension of electrolytic solution. To secure more accurate measurements of viscosity and surface tension of the solutions, Ostwald viscometer was made with pyrex glass and modified the timing system for the transit of the meniscus with a new electronics system and with a pulse counter. As the experimental data obtained were in good agreement with the Jone's values, Jones-Dole equations for the electrolytic solutions were deduced, ${\eta}KCl\;=\;1\;+\;0.0052{\sqrt{c}}\;-\;0.01612c\;+\;0.00808c^2\;at\;30^{\circ}C$ ${\eta}KI\;=\;1\;+\;0.0220{\sqrt{c}}\;-\;0.01290c\;+\;0.02988c^2\;at\;25^{\circ}C$${\eta}Na\; =\;1\;+\;0.0240{\sqrt{c}}\;-\;0.0640c\;+\;0.03268c^2\;at\;25^{\circ}C$Gruneisen effect appeared in the dilute solution, whereas anti-Gruneisen effect was found for the extremely dilute solution. No satisfactory interpretation for the variation of the viscosity with concentration can be found at the present.

  • PDF