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Abstract

In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical
behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two
normal stress differences N; and N,, especially N, and the extensional viscosity 7. In this paper, we
shall be mainly interested in ‘constant-viscosity’ Boger fluids, and, accordingly, we shall limit attention to
N, and 7. We shall concentrate on two important flows - axisymmetric contraction flow and “splashing”
(particularly that which arises when a liguid drop falls onto the free surface of the same liquid). Modern
numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious
manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining
flow characteristics. Specifically, in an axisymmetric contraction flow, high 7, can retard the flow, whereas
high N, can have the opposite effect. In the splashing experiment, high 7, can certainly reduce the height
of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical
influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

Keywords : non-Newtonian fluids, complex flows, contraction flows, splashing, rheometry, constitutive

modeling, computational rheology

1. Introduction

1.1. Rheometry

In this communication, we shall be referring frequently
to two important ‘rheometrical” flows, namely steady sim-
ple shear flow and extensional flow. In the former, there is
flow only in the x direction and this depends simply and
linearly on the y coordinate. i.e.

ve=yy, v, =v, =0, (1

where v, is the velocity vector and 7 is the constant shear
rate.

For a non-Newtonian elastic liquid, the stress tensor
components oy can be conveniently written in the form:

oy =0=7n(),
Gx_ay,v:Nl(j/), (2)
Oy = 0= Ny(7),

where o is the shear stress, 7 is the shear viscosity and N,
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and N, are the so-called first and second normal stress dif-
ferences, respectively (Barnes et al., 1989).

For a Newtonian fluid, the stress distribution simply
involves one material constant — the coefficient of viscosity
n7 and the two normal stress differences are zero. In the
case of a non-Newtonian elastic liquid, 7 can now be a
function of the shear rate, with so-called ‘shear thinning’
the most commonly observed behaviour. Also, both normal
stresses are of potential importance, particularly N,.

For future reference, we show in Fig. 1 rheometrical data
for a so-called Boger fluid (Boger, 1977/1978).

A typical Boger fluid would be a dilute (often a very
dilute) solution of a high molecular weight polymer in a
very viscous ‘Newtonian’ solvent. Note that, in the fluid
we have taken for illustration purposes, the shear stress
(over the shear rates investigated) is taken to be a linear
function of 7, ie. the viscosity is constant. Note also that
N, is much higher than o, indicating that the fluid is in the
‘highly-elastic’ category.

For Boger fluids, N, is invariably found to be much
smaller than &V, and, in many (most) computational studies,
N, is taken to be zero.
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Fig. 1. Rheometrical behaviour of a Boger fluid (see Walters
1980).

At this point it is important to stress that, from a con-
tinuum mechanics standpoint, the initial dependence of N,
on y has to be quadratic and there is experimental evi-
dence (as in Fig. 1) that this quadratic dependence can per-
sist over a reasonable range of shear rates. However, there
is also rheometrical evidence available that the dependence
of Nyon y can become weaker than quadratic as the shear
rate increases further. This is often accompanied by slight
shear thinning. For example, in a comprehensive study
entitled “A rheometrical study of Boger fluids”, Jackson et
al. (1984) concluded “It will be seen that over a range of
shear rates, ois a linear function of 7 and N, is a quadratic
function of 7, but that there is a departure from this sec-
ond-order behaviour at the high shear rates”.

The second rheometrical flow of importance in the
present study is that called ‘uniaxial extensional flow’, with
a velocity field which can be expressed as

Y AN -
VeTEX, v, TS v, > 3)
where & is the so-called extensional strain rate. We can
write the corresponding stress distribution in the form:

T= Oy = Oa— 0. =E115(E) 4)

where 775 is the ‘extensional viscosity’. For a Newtonian
fluid, =37, a result first obtained by Trouton over a hun-
dred years ago (see, for example, Tanner and Walters,
1998). For this reason, the ratio between the two viscosities
is called the ‘Trouton ratio 7%’, and this clearly takes the
value 3 for a Newtonian fluid. For a non-Newtonian elastic
fluid, T% can be significantly higher than 3, with ‘orders of
magnitude’ increases not uncommon.

From the above discussion and the relevant literature, we
can associate the following rheometrical behaviour with
Boger fluids:

1. A reasonably constant shear viscosity 7.

2. A potentially high extensional viscosityr, as the
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extensional strain rate increases.

3. A high first normal stress difference »,, which has a
quadratic shear rate dependence on 7, at least for small to
moderate shear rates.

4. A second normal stress difference N, which is neg-
ative and at most one tenth of the magnitude of N,. It is
often taken as zero in computational studies.

Clearly, any constitutive model that we use to describe
Boger fluids has to satisfy (1)-(4), at least in a semi-quan-
titative sense.

1.2. Two complex flow

In this communication, we shall concentrate on two (very
different) complex flows, which we shall refer to in a
generic fashion as ‘contraction flows’ and ‘splashing’.

A schematic of the former is shown in Fig, 2, where both
an axisymmetric and a planar contraction are shown (Nigen
and Walters, 2002). However, we shall only be considering
the former in this work. So, fluid is forced under a pressure
gradient through a contraction linking one long cylindrical
channel to another of shorter diameter. At specific loca-
tions on the walls, upstream and downstream of the con-
traction, pressure measurements are made. These locations
must be far enough from the contraction for the flows to be
“‘fully-developed’ and ‘Poiseuille like’ at the pressure-
measurement stations.

In contraction flows, there is often significant interest in
the kinematics of the flow structure, particularly the vor-
tices which provide computational rheologists with sig-
nificant challenges (Walters and Webster, 2003). However,
in the present work, we shall confine attention to the
dynamics of the flow, which is usually studied through the
so-called Couette correction C, defined by

C=[Ap-Ap,L,~Apla 20, . 4

This is usually plotted as a function of the Deborah number
(or Weissenberg number)

De (or We)= 1y,. (6)

We shall use the Deborah number and the Weissenberg
number interchangeably in various points of this commu-
nication. Specifically, we shall use De in the contraction-
flow section and We in the splashing section. This reflects
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Fig. 2. Schematic diagrams of flow through a planar and an axi-
symmetric contraction.
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the notation used in previous papers on these subjects.

An alternative measure of ‘resistance to flow’ is the so-
called Excess Pressure Drop (epd), defined by Binding et
al. (2006),

«_ (Ap—Apu)g
(AP*APfd)N ’

In this form, p” can be equated to the ratio of Couette cor-
rections for constant-viscosity Boger and Newtonian flu-
ids, with corresponding wall shear stress. In the above
equations, Ap is the total pressure difference between the
inlet and outlet transducers, Ap, is the fully-developed
pressure gradient in the upstream section, Ap, is the fully-
developed pressure gradient in the downstream section, L,
and L, are their respective lengths, o, is the fully-devel-
oped wall shear stress in the downstream channel. The sub-
scripts N and B represent the corresponding Newtonian
and Boger fluid values, respectively, when these are appli-
cable. A is a characteristic relaxation time and %, is the
shear-rate at the downstream wall.

It is well known that, when elastic liquids flow in
axisymmetric contractions, large increases in C (or epd)
can occur. Cogswell (1972), in an influential paper, was
clearly guided by such an observation in suggesting that
the Couette correction could be used to provide an estimate
of extensional viscosity levels, and he provided an analysis
to support such a view. This was followed up somewhat
later by two important papers by Binding (1988; 1991), the
second of which is especially relevant to the ideas we wish
to advance in the present paper. This concerns the influ-
ence of rheometrical variables such as normal stress dif-
ferences and extensional viscosity in the determination of
the Couette correction. The second Binding paper is espe-
cially relevant in this connection and contains the follow-
ing observation: “The analyses suggest that the effects of
elasticity and extensional viscosity are opposite, the former
resulting for example in a decreased Couette correction,
while the latter causes the Couette correction to increase”.

Interestingly, Debbaut and Crochet (1988) and Debbaut
et al. (1988) reached a very similar conclusion from com-
putational work carried out at the same time. Later, we
shall have cause to make use of some of the Debbaut and
Crochet (1988) ideas. But, at this point, it is sufficient to
précis one of their main conclusions: “When the influence
of extensional viscosity alone is included, large increases
in the Couette correction are predicted. However, these can
be hidden and indeed reversed when other theometrical
effects such as large normal stress differences are included”.

In our recent computational work on contraction flows
(Walters et al., 2008; 2009a, b), we decided to concentrate
on the related contraction-expansion (4:1:4) geometry, with
rounded corners (see Fig. 3).

We did this for a number of different reasons. For example:

(1) We found the geometry to be far easier to handle in

Apy=Ap,L,+ Apyly. (7)
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Fig. 3. Schematic diagram of the contraction-expansion geometry
with rounded corners.

the computations than the conventional 4:1 geometry with
sharp corners. Pressure differences were an order of mag-
nitude lower for the 4:1:4 geometry than with 4:1 geometry
flows, with shorter downstream distances demanded to
establish relaxed stress beyond the constriction. We have
certainly been able to reach higher values of the Deborah
number in the simulations. Furthermore, application of the
basic numerical method was already well developed in the
Swansea research group.

(2) Importantly, experimental data for the 4:1:4 geometry
had been supplied by McKinley and his co-workers (Roth-
stein and McKinley, 2001). These showed the same trends
as those already well known in the conventional 4:1 geom-
etry. Of major importance was the appearance in the Roth-
stein and McKinley experiments of substantial increases in
the epd for increasing Deborah numbers in the case of
Boger fluids.

We now briefly introduce the second type of complex
flow we wish to study. In this, either a solid sphere or a lig-
uid drop is released from some distance above the free sur-
face of a liquid. The resulting flow structure is then
observed through the use of a high-speed camera.

The resulting splashes can have a rich structure and Fig.
4 shows a schematic representation of some of the features
that can occur. The initial crater, the crown structure (with
the possibility of distinct satellite drops) and the vertical jet
(again with the possibility of distinct satellite drops) are all
features that can occur in a single experiment, although it
must be stressed that one or more of these features may be
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& ceown & formation of dropletis)
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B
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ar solid sphere
Fig. 4. Schematic representation of the splashing problem, when

either a solid sphere or a liquid drop is released above the
free surface of a liquid.
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i

Fig. 5. The splash of a water drop (4 mm in diameter) on water (falling distance: 50 cm) (from Cheny and Walters, 1999).

absent in a given experiment. We shall be mainly interested
in the vertical jet, which is called “the Worthington jet”
after the scientist who first investigated the phenomenon
over one hundred years ago (Worthington, 1908). This can
reach extravagant heights in the case of Newtonian liquids,
given the right experimental conditions.

In our previous computational studies on splashing (see,
for example, Tomé ez al., 2007), we confined attention to
the ‘falling drop’ situation, since this presented fewer
numerical difficulties and still provided interesting insights
into the general splashing phenomenon. To demonstrate
that the observed flow features for this case can match
those in the schematic diagram we have illustrated in Fig.
4, we show, in Fig. 5, experimental pictures for a water
drop impinging on water.

One reason for the rheological interest in the Worthing-
ton jet arises from the fact that very low levels of vis-
coelasticity in a liquid can result in a spectacular decrease
in the height of the jet (Cheny and Walters, 1996, 1999;
Cheny, 1997; Nigen and Walters, 2001). Specifically, con-
centrations of high molecular weight polymers as low as
10Wppm, (comparable to those used in ‘drag-reduction’
studies), can lead to jets which are an order of magnitude
lower than those observed in equivalent Newtonian liquids.
This has been tentatively associated with the relatively
high extensional viscosity found in very dilute polymer
solutions. Indeed, the Worthington-jet experiment has even
been proposed as an inexpensive monitor of extensional-
viscosity levels! (Cheny and Walters, 1999).

Some experimental studies by Yang er al. (2000) have
indicated that the situation may be more complex in the
case of surfactant solutions, and the original proposal to
associate low Worthington-jet heights with extensional vis-
cosity merits further study. This provides one of the moti-
vations for the present study.

So, the scene is set. In the two basic flow situations we
have introduced, extensional viscosity has been proposed
as a major influence on flow characteristics, leading to high
Couette corrections in contraction flows and to reduced Wor-
thington-jet heights in the splashing experiments.

We shall investigate these ideas in the present commu-
nication by carrying out detailed computational studies, all
of which attempt to isolate the respective influences of
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extensional viscosity and other rheometrical variables on
flow characteristics.

1.3. Constitutive equations and some existing numeri-
cal simulations

We now need to address the question of choosing appro-
priate constitutive equations for the Boger fluids we have
discussed in relation to the experimental results we wish to
understand and interpret.

Confining attention to incompressible Boger fluids, we
can write the Cauchy stress tensor oy in the form:

G = D0+ Tig» ®

where p is an arbitrary isotropic pressure, J; the Kronecker
delta, and T is the so-called extra-stress tensor.
Constitutive equations relate the extra-stress tensor 7 to
a suitable kinematic variable such as the rate-of-strain ten-
sor d,. For two specific but very different reasons, it is
often convenient to introduce a so-called “stress splitting™:

Tu=Ty" + T, ©)
and to write 75’ as a Newtonian contribution
Tigcl)zzﬂldik' (10)

Computational theologists have often found that the intro-
duction of the Newtonian component can greatly assist in
the numerical simulation of complex flows, and experi-
mental theologists, particularly those working with Boger
fluids, have also found the modification to be useful. They
invariably associate 7, with the solvent viscosity.

As an example of this stress splitting, consider the well-
known Oldroyd B model, with constitutive equations given
by

v v
Tyt ATy = 20l dyt Aady ] (11)

where the triangle denotes the usual upper-convected time
derivative introduced by Oldroyd (1950).
It is often convenient to write this equation in the form:

T = 2n0fdy : (12)
v
T+ TP = 200(1-Pdy.,
where = 1,/2,.
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For the popular Boger fluids, which have been used in
many experimental studies (see, for example, Boger and
Walters, 1993), the polymer contribution to the total vis-
cosity is very low. This is dominated by the solvent con-
tribution, so that £ is usually in the range 0.9 to 0.95, or
even higher.

The important rheometrical functions for the Oldroyd B
model are given by

77: 7709
.2
N =2n{1-Biy , N,=0, (13)

e =3pn+ 3(1 fﬁ)m{ﬁ} -
1-A4,e-241¢

We see that the Oldroyd B model predicts a constant
shear viscosity 7, a quadratic first normal stress difference
N, a zero second normal stress difference N, and a poten-
tially large extensional viscosity 7:. In fact, 77; reaches an
infinite value at a finite value of the extensional strain rate,
E.

As we have indicated, shear thinning is (virtually) absent
in Boger fluids. Furthermore, the uniaxial extensional vis-
cosity levels can be very high. These facts have been the
main reasons for the popularity of the Oldroyd B model in
Computational Rheology. The relative simplicity of the
model is another factor of importance.

However, it needs to be stressed that all simulations for
the Oldroyd B have been singularly unable to predict the
large increases in the Couette correction found when Boger
fluids flow through axisymmetric contraction and contrac-
tion/expansion flows (Walters ef al., 2008; 2009a, b).

The initial reaction of workers in the field was to ques-
tion the accuracy of the numerical schemes being employed.
However, this is no longer viewed as a valid criticism and
simulations of the sort shown in Fig. 6 are now viewed as
trustworthy. As a result, doubt has been cast on the suit-
ability of the choice of the Oldroyd B model, and this is
one of the issues we wish to address in this paper.

L10f
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Fig. 6. Numerical pressure drop (epd) vs. Deborah number D,
simulations for the Oldroyd B model for three values of
(see, for example, Walters er al. 2009b).
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Fig. 7. Simulations of fluid flow as a function of a suitable vis-
coelastic flow variable at the time the Worthington jet
reaches its maximum height (from Tomé et al. 2007).

So far as the ‘splashing drop’® problem is concerned,
numerical results for the Oldroyd B model have recently
been obtained by Tomé ef al. (2007), and Fig. 7 is a typical
figure from that publication. This shows a frontal view of
the jet at its maximum height for increasing values of a
suitable non-dimensional variable.

Commenting on such data, Tomé et al. remark: “We
regard the qualitative agreement between the simulations
and the experimental results of Cheny and Walters to be
encouraging; indeed, the numerical technique would appear
to provide a method for investigating the precise reasons
for the substantial influence of viscoelasticity on the height
of the Worthington jet”. We shall attempt to confirm this
optimism in the current paper.

2. Some constitutive-equation suggestions

We shall now draw on some of the ideas put forward by
Debbaut and Crochet (1988) in an important paper that has
not received the attention it deserved (Debbaut er al,
1988). In these papers, use was made of two rate-of-strain
invariants, which we shall conveniently refer to as 7 and &
in what follows:

y=2/,, &=3MI/11,. (14)

Here, I1, and II1, are the two nonzero invariants of the rate
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of strain tensor dj in their usual form:
) %tr(dz), L, = det(d) . (15)

The reason for the choice (14) instead of (15) has been
fully explained by Debbaut and Crochet (1988) and Deb-
baut er al. (1988). Clearly, the invariant » reduces to the
usual shear rate in a steady simple shear flow and the
invariant & reduces to the usual extensional strain rate in a
uniaxial extensional flow. Hence the reason for the nota-
tion.

We shall now introduce four constitutive models A-D, all
of which have the structure in Egs. (9) and (10).

Model A is simply the Newtonian fluid with 75 given

by
T30 = 2n5(1- B)dy, - (16)

Model D is the Oldroyd B model we have already intro-
duced in Egs. (11) and (12), with rheometrical functions
given in Eq. (13).

Models B and C can be seen as extensions of the mod-
els GNM1 and UCM1 in the Debbaut et al. (1988)
papers.

B is an inelastic model with T given as in Eq. (12) and

21701 —Pdy

T'= .- (17
(1-4,6-2(4,8))

The rheometrical functions for model B are

77 = 770 s

Nl = 0 > (18)

1
e =36+ 30-pym) ———].
1-4,8-212%

i.e. the same 7 and 7; as the Oldroyd B model, but with
N, =0.

Model C has viscoelastic properties with T, given as in
Eq. (12) and

T2+ T =20 By,

17 &)= no(1-A(1~A-204)). (19)

In this case, the rheometrical functions are

n="o,
Ny =2n(1-PA? (20)
Ne=31,

This time it is 7 and N, that match the expressions for the
Oldroyd B model, but 77; now has the Newtonian expres-
sion.

Model C can be viewed as a “Generalized White-
Metzner model” (see, for example Walters et al., 2009b)

The benefit of having the four A-D models available is
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that it allows us the luxury of the following comparisons:

1. A comparison of the simulations for models A and B
provides an indication of the effect of extensional viscosity
on flow characteristics, since =17, and N;=0 for both
models.

2. A comparison of the simulations for models A and C
provides an indication of the effect of “normal stresses” on
flow characteristics, with a “Newtonian” extensional vis-
cosity in both.

3. A comparison of the simulations for models B and C
provides an indication of the relative strengths of normal
stress and extensional viscosity effects on flow character-
istics.

4. A comparison of the simulations for models C and D
(i.e. the Oldroyd B model) highlights further the effect of
a high extensional viscosity in the case of elastic liquids.

5. A comparison of the simulations for models B and D
highlights further the normal stress effect, keeping in mind
however that, in this comparison, model B is inelastic and
model D is viscoelastic.

We feel that numerical simulations for the four consti-
tutive models (A-D) should be able to throw considerable
light on the influences of the various rheometrical func-
tions on flow characteristics, and we discuss these issues in
the next section for the two complex flows we have already
highlighted. In the discussion, we recognize the limitation
of using steady rheometrical functions in the second prob-
lem, which is of course intrinsically dynamic in character.

3. Numerical simulations for models A-D

3.1. Simulations for flow through a 4:1:4 contraction/
expansion

In this section, we shall concentrate on the contraction/
expansion geometry with smooth corners shown schemat-
ically in Fig. 3. We wish to obtain numerical simulations
for all four models discussed in section 2 using a numerical
method described in Wapperom and Webster (1998), Web-
ster et al. (2004), and Belblidia ef al. (2008). This is essen-
tially a hybrid finite element/finite volume algorithm, which
follows a three-stage time-splitting semi-implicit formu-
lation. This scheme combines a finite element ( f&) dis-
cretisation (Taylor-Galerkin/Pressure-Correction) for the
momentum equation with a cell-vertex finite volume ( /)
scheme for the differential constitutive laws. The combi-
nation forms a time-stepping process, with a fractional-
staged formulation based upon each time-step, invoking
two-step Lax-Wendroff and Crank-Nicolson time-stepping
procedures. Cell-vertex fi-schemes applied to the stress
equations are based upon an upwinding technique (fluc-
tuation distribution) that distributes control volume resid-
uals to provide corresponding nodal solution updates. This
cell-vertex finite volume sub-element approach has proved
to be an effective strategy through judicious discrete treat-
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Fig. 8. Normalized pressure drop (epd) vs. D, for the A-D con-
stitutive models (cf. Walters ez al. 2009b) (8=10.9).

ment of flux, source and time terms of the constitutive
equation.

In contrast to our work on the splashing problem in the
next section, where the Reynolds number R, is viewed as
an important kinematic variable, here we shall restrict
attention to “creeping flow”, ie. the Reynolds number is
assumed to be zero.

So, we are now in a position to investigate flow in the
contraction/expansion geometry using the four constitutive
models (A-D) described earlier. We concentrate on the epd
defined in Eq. (7), rather than the Couette correction, and
we restrict attention to #= 0.9, although other values of g
were studied in Fig. 6. The important simulations for our
present purpose are all shown in Fig. 8. Note that we have
included a Newtonian reference line on the graph, although
we are aware that a Deborah number of zero is the only
one of relevance in this case.

A comparison of the simulations for models A and B
indicates that high extensional viscosities can give rise to
significant increases in the epd.

Similarly, a comparison of the simulations for models A
and C clearly indicates that the presence of normal stress
differences can give rise to a decrease in the epd.

We have shown that the Oldroyd B model (Model D) has
both a non-zero normal stress difference and an increasing
non-Newtonian extensional viscosity and here we see a
competition between the two rheometrical influences, with
the extensional viscosity about to be the dominating influ-
ence at high De. However, we have not been able to reach
the values of De in the simulations that would allow us to
attain the expected (non-trivial) positive values of epd.

It is not without interest that the general shape of the
curve for the Oldroyd B model is very similar to a sche-
matic Couette correction C vs. Deborah number De dia-
gram contained in a paper by Crochet and Walters, (1993).
The associated text is revealing: “The slight drop in the
Couette correction at low values of the Deborah number is
difficult to measure experimentally, but most respectable
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numerical codes testify to its existence. The large increase
in the Couette correction at high Deborah number is very
easy to measure experimentally, but provides significant
challenges to even the most adept numerical simulation”.
In many ways, this remains a valid observation!

As a general conclusion to this section, we simply remark
that our numerical simulations for models A-D have con-
firmed earlier comments by Binding (1991) and Debbaut
and Crochet (1988) that, whereas high extensional viscosity
levels can give rise to large increases in the epd, increasing
normal-stress difference levels can have the opposite effect.

3.2. Simulations for the “splashing” problem

The splashing problem introduced in section 1.2 presents
computational rheologists with significant challenges. The
flow is clearly unsteady in both an Eulerian and Lagrang-
ian sense, with the shape of the free surface of the liquid
changing dramatically with time. As a result, special numer-
ical techniques have to be employed. These have been
described in detail in previous papers (McKee ef al., 2008;
Tomé et al. 2004; 2008) and we simply outline below their
main features.

The numerical techniques employed are projection meth-
ods on a staggered grid based on the Marker and Cell tech-
nology, (McKee et al., 2008). The software used is that
employed for the Generalized Newtonian Model by Tomé
ef al. (2008), whilst the White-Metzner model is solved by
a modification of the existing Oldroyd B code as follows:

The extensional viscosity 77z (given by (13)) is non-
dimensionalized to provide

7 =370+ 3(1- A 1 | 1)

|- Wez-2(Wez)

where 0= 7/ uae » £=(L/U)E and We= A, (U/L), Uand L
being the velocity and length scales, respectively. Since the
extensional viscosity is an increasing function of , it can
have a singularity at 0.5We and so we define

Tmax = 3[7)770 + 3(1 '/})7]0& ] }7 (22)

1= WeEmam—2(We Emax)

where &ne = 0.49/We. (Note that We is not necessarily the
“Weissenberg number’ arising, for example, in studies on
the Oldroyd B constitutive relationship; it is simply employed
here to represent viscoelastic effects).

In the computations, it is assumed that a spherical drop
of fluid is released with a specific downward velocity just
above the surface of a quiescent pool of the same fluid. We
have clearly needed to be selective regarding the exper-
imental conditions to be employed in the computations,
and, in the present study, we have taken:

Drop diameter (D): 10 mm; Tank dimensions: 10 cmx10
cm*4.8 cm; Fluid in the tank: 10 cmx10 cmx4 cm; Height
of the drop to the pool (H): 5 mm; Velocity of the drop (U):
1.0 m/s Fluid viscosity (7,): 0.025 Pa.s; Mesh size: dx =
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Fig. 9. Simulations of the height of the Worthington jet as a func-
tion of time for the inelastic model B (5= 0.9).

= 0z = 1 mm, giving a mesh size of (100x100x80)-cells
within the computational domain.

Fig. 9 contains representative simulations of the jet
height versus time for the inelastic model B (i.e. the Gen-
eralized Newtonian Model with a high extensional vis-
cosity). The graphs tell an obvious story, namely that, as
the extensional viscosity levels increase, the maximum
height of the Worthington jet decreases significantly! This
is certainly consistent with the earlier suggestion of Cheny
and Walters (1996; 1999) that the height of the Worthing-
ton jet can be used as a ‘monitor of extensional viscosity
levels’. However, before we are able to confirm the sug-
gestion, we clearly need to address the matter in more
detail. At least the data in Fig. 9 illustrate that ‘extensional
flow’ plays an important role in the splashing experiment.

Fig. 10 is the ‘splashing’ equivalent of the contraction-
flow data provided in Fig. 8, since it includes a meaningful
comparison of the maximum heights for all four consti-
tutive equations (A-D). We view the simulations as being
revealing but also somewhat frustrating at the same time.

Clearly, all three non-Newtonian models predict lower

2.5 ]
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2+ ° .
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& [C - White-Metzner] ——#&
= {D - Oldroyd-B] —@—
515 A - Newtonian reference line] i
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. . ) .
Y 0.5 1 1.5 2
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Fig. 10. Simulations of the maximum jet height of the Wor-
thington jet as a function of We for all four constitutive
models (5=0.9).
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Worthington-jet heights than that for a Newtonian liquid
under the same conditions. However, the drop in height for
model B, already referred to in connection with Fig. 9, is
much greater than that predicted for model C, (which high-
lights normal stress effects). Indeed, the curve for model C
goes through a minimum and the jet height is increasing
with We at the highest values of We attainable, although
we are clearly some way from predicting jet heights that
are higher than the Newtonian value.

In one sense, we can anticipate that, since ‘splashing’ is
invariably viewed as containing more ‘extension’ than
‘shear’, the curve for model B must be significantly lower
than that for curve C. What is more difficult to digest and
interpret is the observation that the curve for model D (the
Oldroyd B model) is so near to that of model C and so far
from model B. We are led to suggest (postulate) that the
reason for this may lie in the fact that model B is inelastic
(with instantaneous dependence on extensional dynamics),
whilst models C and D are viscoelastic (introducing mem-
ory effects)! We are fully aware that the splashing exper-
iment is manifestly ‘unsteady’ and viscoelasticity per se
must play a role, independently of matters relating to
"extensional viscosity’ and ‘normal-stress differences’. This
is something we shall wish to pursue further in the future.

We close this discussion with two comments, one pos-
itive, the other negative. First, it is clear that the curve for
the Oldroyd B model lies between those for models B and
C at the higher We values, and this is at least consistent
with what we found in the contraction-flow simulations.

On the negative side, it is obvious that the Oldroyd B
model is unable to predict the very large drops in jet height
observed in splashing experiments on very dilute polymer
solutions (see, for example, Cheny and Walters 1999).
Again, further simulations for other more complicated con-
stitutive models, along the lines of those considered by
Walters et al. (2008, 2009a,b), may be in order.

4. Conclusion

In this paper, we have attempted to understand and inter-
pret certain viscoelastic flow phenomena associated with
two complex flows. By considering models A-D, we have
gone some way to interpret that which is observed exper-
imentally, but more numerical work clearly needs to be
carried out before the extravagant viscoelastic effects
found experimentally are interpreted theoretically.
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