The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids

  • Walters, K. (UW Institute of Non-Newtonian Fluid Mechanics, University of Aberystwyth) ;
  • Tamaddon-Jahromi, H.R. (UW Institute of Non-Newtonian Fluid Mechanics, Swansea University, School of Engineering) ;
  • Webster, M.F. (UW Institute of Non-Newtonian Fluid Mechanics, Swansea University, School of Engineering) ;
  • Tome, M.F. (Departmento de Matematica Aplicada e Estatistica, Universidade de Sao Paulo) ;
  • McKee, S. (Department of Mathematics, University of Strathclyde)
  • Published : 2009.12.31

Abstract

In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences $N_1$ and $N_2$, especially $N_1$, and the extensional viscosity $\eta_E$. In this paper, we shall be mainly interested in 'constant-viscosity' Boger fluids, and, accordingly, we shall limit attention to $N_1$ and $\eta_E$. We shall concentrate on two important flows - axisymmetric contraction flow and "splashing" (particularly that which arises when a liquid drop falls onto the tree surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high $\eta_E$ can retard the flow, whereas high $N_1$ can have the opposite effect. In the splashing experiment, high $\eta_E$ can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

Keywords

References

  1. Barnes, H.A., Hutton, J.F. and K. Walters, 1989, An Introduction to Rheology, Elsevier, Amsterdam
  2. Belblidia, F., Matallah, H. and M.F. Webster, 2008, Alternative subcell discretisations for viscoelastic flow: Velocity-gradient approximation, J. Non-Newtonian Fluid Mech. 151, 69-88 https://doi.org/10.1016/j.jnnfm.2007.11.003
  3. Binding, D.M. 1988, An approximate analysis for contraction and converging flows, J. Non-Newtonian Fluid Mech. 27, 173-189 https://doi.org/10.1016/0377-0257(88)85012-2
  4. Binding, D.M., 1991, Further considerations of axisymmetric contraction flows, J. Non-Newtonian Fluid Mech. 41, 27-42 https://doi.org/10.1016/0377-0257(91)87034-U
  5. Binding, D.M., Phillips, P.M. and T.N. Phillips, 2006, Contraction/expansion flows: The pressure drop and related issues, J. Non-Newtonian Fluid Mech. 137, 31-38 https://doi.org/10.1016/j.jnnfm.2006.03.006
  6. Boger, D.Y., 1977/1978, A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mech. 3, 87-91 https://doi.org/10.1016/0377-0257(77)80014-1
  7. Boger, D.Y. and Walters, K., 1993, Rheological Phenomena in Focus, Elsevier Science Publishers
  8. Castelo, A., Tom$\acute{e}$, M.F., Cesar, C.N.L, McKee, S., and J.A. Cuminato, 2000, Freeflow: An integrated simulation system for three-dimensional free surface flows, Computing and Visualization in Science, 2, 199-210 https://doi.org/10.1007/s007910050040
  9. Cheny, J-M. and. K. Walters, 1996, Extravagant viscoelastic effects in the Worthington jet experiment, J. Non-Newtonian Fluid Mech. 67, 125-135 https://doi.org/10.1016/S0377-0257(96)01473-5
  10. Cheny, J-M., Ph.D. thesis, University of Wales, 1997
  11. Cheny, J-M. and K. Walters, 1999, Rheological influences on the splashing experiment, J. Non-Newtonian Fluid Mech. 86, 185-210 https://doi.org/10.1016/S0377-0257(98)00208-0
  12. Cogswell, F.N., 1972, Measuring the extensional rheology of polymer melts, Tran. Soc. Rheo. 16, 383-403 https://doi.org/10.1122/1.549257
  13. Crochet, M.J. and K. Walters, 1993, Computational Rheology: a new sciencε, Endeavour, 17(2), 64-77 https://doi.org/10.1016/0160-9327(93)90199-D
  14. Debbaut, B. and M.J. Crochet, 1988, Extensional effects in complex flows, J. Non-Newtonian Fluid Mech. 30, 169-184 https://doi.org/10.1016/0377-0257(88)85023-7
  15. Debbaut, B., Crochet, M.J., Barnes, H.A. and K. Walters, 1988, Extensional effects in inelastic liquids, Proc. Xth Inter. Congress on Rheology, Sydney, 291-293
  16. Jackson, K.P., Waltεrs, K. and R.W. Williams, 1984, A rheometrical study of Boger fluids, J. Non-Newtonian Fluid Mech. 14, 173-188 https://doi.org/10.1016/0377-0257(84)80043-9
  17. McKee, S., Tom$\acute{e}$, M.F., Ferreira, Y.G., Cuminato, J.A., Castelo, A., and F.S. de Sousa, 2008, The MAC method, Computers and Fluids 37, 907-930 https://doi.org/10.1016/j.compfluid.2007.10.006
  18. Nigen, S. and K. Walters, 2001, On the two-dimensional splashing experiment for Newtonian and slightly elastic liquids, J. Non-Newtonian Fluid Mech. 97, 233-250 https://doi.org/10.1016/S0377-0257(00)00221-4
  19. Nigen, S. and K. Walters, 2002, Viscoelastic contraction flows: comparison of axisymmetric and planar configurations, J. Non-Newtonian Fluid Mech. 102, 343-359 https://doi.org/10.1016/S0377-0257(01)00186-0
  20. Oldroyd, J.G., 1950, On the formulation of rheological equations of state, Proc. Roy. Soc. A200, 523-541
  21. Rothstein, J.P. and G.H. McKinley, 2001, The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop, J. Non-Newtonian Fluid Mech. 98, 33-63 https://doi.org/10.1016/S0377-0257(01)00094-5
  22. Tanner, R.I. and K. Walters, 1998, Rheology, an Historical Perspective, Elsevier Science & Technology, Netherlands
  23. Tom$\acute{e}$, M.F., Castelo, A., Ferreira, V.G and S. McKee, 2008, A finite diffierence technique for solving the Oldroyd B model for 3D unsteady free surface flows, J. Non-Newtonian Fluid Mech. 154, 179-206 https://doi.org/10.1016/j.jnnfm.2008.04.008
  24. Tom$\acute{e}$, M.F., Grossi, L., Castelo, A., Cuminato, J.A., Mangiavacci, N., Ferreira, V.G, de Sousa, F.S., and S. McKee, 2004, A numerical method for solving three-dimensional generalized Newtonian free surface flows, J. Non-Newtonian Fluid Mech. 123, 83-103
  25. Tom$\acute{e}$, M.F., Grossi, L., Castelo, A., Cuminato, J.A., McKee, S., and K. Walters, 2007, Die-swell, splashing drop and a numerical technique for solving the Oldroyd B model for axisymmetric free surface flows, J. Non-Newtonian Fluid Mech. 141, 148-166 https://doi.org/10.1016/j.jnnfm.2006.09.008
  26. Walters, K., 1980, Introduction, in 'Rheometry: lndustrial Applications'. Ed. K. Walters, Research Studies Press, p13
  27. Walters, K., Webster, M.F. and H.R. Tamaddon-Jahromi, 2008, Experimental and Computational aspects of some contraction flows of highly elastic liquids and their impact on the relevance of the Couette correction in extensional Rheology, Proc. 2nd Southern African Conference on Rheology (SASOR 2), 1-6
  28. Walters, K., Webster, M.F. and H.R. Tamaddon-Jahromi, 2009a, The numerical simulation of some contraction flows of highly elastic liquids and their impact on the relevance of the Couette correction in extensional rheology, Chem Eng Sci. 64, 4632-4639 https://doi.org/10.1016/j.ces.2009.01.007
  29. Walters, K., Webster, M.F. and H.R. Tamaddon-Jahromi, 2009b, The White-Metzner model : Then and Now, Proceedings of the 25th Annual Meeting of the PPS meeting, Goa, India, IL 02, 1-14
  30. Wapperom, P. and M.F. Webster, 1998, A second-order hybrid finite-element/volume method for viscoelastic flows, J. Non-Newtonian Fluid Mech. 79, 405-431 https://doi.org/10.1016/S0377-0257(98)00124-4
  31. Webster, M.F., Tamaddon-Jahromi, H.R. and M. Aboubacar, 2004,. Transient viscoelastic flows in planar contractions, J. Non-Newtonian Fluid Mech. 118, 83-101 https://doi.org/10.1016/j.jnnfm.2004.03.001
  32. Worthington, M.A., 1908, A Study of Splashes, Longmans, Green and Co., London
  33. Yang, F., Qi, Y., Morales, W., Hart, D.J. and J.L. Zakin, 2000, Effect of surfactant additive composition on Worthington jet splashing, Proceedings of the 13th International Congress on Rheology, Vol. 2, Cambridge, UK, Paper 2-274